The width of a rectangle measures [tex]\((9s + 6)\)[/tex] centimeters, and its length measures [tex]\((s + 1)\)[/tex] centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?

A. [tex]\(15s + 2\)[/tex]
B. [tex]\(7 + 10s\)[/tex]
C. [tex]\(14 + 20s\)[/tex]
D. [tex]\(4 + 30s\)[/tex]



Answer :

To determine the perimeter of a rectangle, we'll use the formula for the perimeter of a rectangle, which is:

[tex]\[ \text{Perimeter} = 2 \times (\text{Length} + \text{Width}) \][/tex]

Given:
- The width of the rectangle is [tex]\((9s + 6)\)[/tex] centimeters.
- The length of the rectangle is [tex]\((s + 1)\)[/tex] centimeters.

Let's apply these values to the perimeter formula step-by-step:

1. Substitute the given expressions into the perimeter formula:

[tex]\[ \text{Perimeter} = 2 \times \left((s + 1) + (9s + 6)\right) \][/tex]

2. Combine the expressions inside the parentheses:

[tex]\[ (s + 1) + (9s + 6) = s + 1 + 9s + 6 \][/tex]

3. Simplify the combined expression:

[tex]\[ s + 9s + 1 + 6 = 10s + 7 \][/tex]

4. Multiply the simplified expression by 2:

[tex]\[ 2 \times (10s + 7) = 2 \times 10s + 2 \times 7 = 20s + 14 \][/tex]

Therefore, the expression that represents the perimeter, in centimeters, of the rectangle is:

[tex]\[\boxed{20s + 14}\][/tex]

This matches the given multiple-choice answer:

[tex]\[ \boxed{14 + 20s} \][/tex]