Solve on the interval [tex]$[0, 2\pi)$[/tex]:

[tex]\[ 4 \csc x + 6 = -2 \][/tex]

A. [tex]$\frac{\pi}{3}, \frac{5 \pi}{3}$[/tex]
B. [tex]$\frac{2 \pi}{3}, \frac{4 \pi}{3}$[/tex]
C. [tex]$\frac{\pi}{6}, \frac{5 \pi}{6}$[/tex]
D. [tex]$\frac{7 \pi}{6}, \frac{11 \pi}{6}$[/tex]



Answer :

To solve the given equation [tex]\( 4 \csc x + 6 = -2 \)[/tex] on the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:

1. Isolate [tex]\(\csc x\)[/tex]:
[tex]\[ 4 \csc x + 6 = -2 \][/tex]
Subtract 6 from both sides:
[tex]\[ 4 \csc x = -2 - 6 \][/tex]
Simplify the right-hand side:
[tex]\[ 4 \csc x = -8 \][/tex]
Divide both sides by 4:
[tex]\[ \csc x = -2 \][/tex]

2. Express [tex]\(\csc x\)[/tex] in terms of [tex]\(\sin x\)[/tex]:
Recall that [tex]\(\csc x\)[/tex] is the reciprocal of [tex]\(\sin x\)[/tex]:
[tex]\[ \csc x = \frac{1}{\sin x} \][/tex]
Therefore:
[tex]\[ \frac{1}{\sin x} = -2 \][/tex]
Take the reciprocal of both sides to solve for [tex]\(\sin x\)[/tex]:
[tex]\[ \sin x = -\frac{1}{2} \][/tex]

3. Determine values of [tex]\(x\)[/tex] where [tex]\(\sin x = -\frac{1}{2}\)[/tex]:
[tex]\(\sin x\)[/tex] is negative in the third and fourth quadrants. The reference angle for which [tex]\(\sin\)[/tex] equals [tex]\(\frac{1}{2}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex].

- In the third quadrant, the angle is:
[tex]\[ \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6} \][/tex]

- In the fourth quadrant, the angle is:
[tex]\[ 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6} \][/tex]

Thus, the solutions in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ x = \frac{7\pi}{6}, \frac{11\pi}{6} \][/tex]

4. Compare solutions with given options:
- Option A: [tex]\(\frac{\pi}{3}, \frac{5\pi}{3}\)[/tex]
- Option B: [tex]\(\frac{2\pi}{3}, \frac{4\pi}{3}\)[/tex]
- Option C: [tex]\(\frac{\pi}{6}, \frac{5\pi}{6}\)[/tex]
- Option D: [tex]\(\frac{7\pi}{6}, \frac{11\pi}{6}\)[/tex]

The correct answer matches Option D:
[tex]\[ \boxed{\text{D}} \][/tex]