Answer :
To solve this problem step-by-step, we need to transform the given mathematical statement while providing justifications for each step.
1. Original Mathematical Statement:
[tex]\[ -2(2x^3 + 4x^2 - 3) + 5(x^2 - 2x - 2) \][/tex]
2. Step 1: Apply the Distributive Property.
The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex]. We will distribute [tex]\(-2\)[/tex] and [tex]\(5\)[/tex] across the terms in the parentheses:
[tex]\[ -2(2x^3) + -2(4x^2) + -2(-3) + 5(x^2) + 5(-2x) + 5(-2) \][/tex]
Simplifying each term gives us:
[tex]\[ -4x^3 - 8x^2 + 6 + 5x^2 - 10x - 10 \][/tex]
Justification: Distributive Property
3. Step 2: Apply the Commutative Property of Addition.
The commutative property of addition states that [tex]\( a + b = b + a \)[/tex]. We can reorder terms to group like terms together:
[tex]\[ -4x^3 - 8x^2 + 5x^2 - 10x + 6 - 10 \][/tex]
Justification: Commutative Property of Addition
4. Step 3: Combine Like Terms.
Now, we combine the like terms (terms with the same power of [tex]\( x \)[/tex]):
[tex]\[ -4x^3 + (-8x^2 + 5x^2) - 10x + (6 - 10) \][/tex]
Simplifying each group of like terms gives us:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
Justification: Combine Like Terms
Thus, the missing justifications in the table are:
- Distributive Property
- Commutative Property of Addition
- Combine Like Terms
Therefore, the correct order of justifications is:
Distributive Property; Commutative Property of Addition; Combine Like Terms
1. Original Mathematical Statement:
[tex]\[ -2(2x^3 + 4x^2 - 3) + 5(x^2 - 2x - 2) \][/tex]
2. Step 1: Apply the Distributive Property.
The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex]. We will distribute [tex]\(-2\)[/tex] and [tex]\(5\)[/tex] across the terms in the parentheses:
[tex]\[ -2(2x^3) + -2(4x^2) + -2(-3) + 5(x^2) + 5(-2x) + 5(-2) \][/tex]
Simplifying each term gives us:
[tex]\[ -4x^3 - 8x^2 + 6 + 5x^2 - 10x - 10 \][/tex]
Justification: Distributive Property
3. Step 2: Apply the Commutative Property of Addition.
The commutative property of addition states that [tex]\( a + b = b + a \)[/tex]. We can reorder terms to group like terms together:
[tex]\[ -4x^3 - 8x^2 + 5x^2 - 10x + 6 - 10 \][/tex]
Justification: Commutative Property of Addition
4. Step 3: Combine Like Terms.
Now, we combine the like terms (terms with the same power of [tex]\( x \)[/tex]):
[tex]\[ -4x^3 + (-8x^2 + 5x^2) - 10x + (6 - 10) \][/tex]
Simplifying each group of like terms gives us:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
Justification: Combine Like Terms
Thus, the missing justifications in the table are:
- Distributive Property
- Commutative Property of Addition
- Combine Like Terms
Therefore, the correct order of justifications is:
Distributive Property; Commutative Property of Addition; Combine Like Terms