Answer :
To solve the problem step by step:
1. First, we start with the given expression:
[tex]\[ -2(2x^3 + 4x^2 - 3) + 5(x^2 - 2x - 2) \][/tex]
This is simply the initial expression we are working with.
2. Next, we will apply the Distributive Property:
[tex]\[ -2 \cdot 2x^3 + (-2) \cdot 4x^2 + (-2)(-3) + 5 \cdot x^2 + 5 \cdot (-2x) + 5 \cdot (-2) \][/tex]
Which simplifies to:
[tex]\[ -4x^3 - 8x^2 + 6 + 5x^2 - 10x - 10 \][/tex]
3. Then, we Combine Like Terms to simplify the expression:
Combine [tex]\(-8x^2\)[/tex] and [tex]\(5x^2\)[/tex] to get [tex]\(-3x^2\)[/tex].
Combine [tex]\(6\)[/tex] and [tex]\(-10\)[/tex] to get [tex]\(-4\)[/tex].
So, we have:
[tex]\[ -4x^3 - 8x^2 + 5x^2 - 10x + 6 - 10 \][/tex]
Which simplifies to:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
4. Finally, we can use the Commutative Property of Addition to verify the order does not change the expression:
Rearranging terms would still give us:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
Hence, filling in the missing justifications, the correct order is:
Distributive Property; Combine Like Terms; Commutative Property of Addition
1. First, we start with the given expression:
[tex]\[ -2(2x^3 + 4x^2 - 3) + 5(x^2 - 2x - 2) \][/tex]
This is simply the initial expression we are working with.
2. Next, we will apply the Distributive Property:
[tex]\[ -2 \cdot 2x^3 + (-2) \cdot 4x^2 + (-2)(-3) + 5 \cdot x^2 + 5 \cdot (-2x) + 5 \cdot (-2) \][/tex]
Which simplifies to:
[tex]\[ -4x^3 - 8x^2 + 6 + 5x^2 - 10x - 10 \][/tex]
3. Then, we Combine Like Terms to simplify the expression:
Combine [tex]\(-8x^2\)[/tex] and [tex]\(5x^2\)[/tex] to get [tex]\(-3x^2\)[/tex].
Combine [tex]\(6\)[/tex] and [tex]\(-10\)[/tex] to get [tex]\(-4\)[/tex].
So, we have:
[tex]\[ -4x^3 - 8x^2 + 5x^2 - 10x + 6 - 10 \][/tex]
Which simplifies to:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
4. Finally, we can use the Commutative Property of Addition to verify the order does not change the expression:
Rearranging terms would still give us:
[tex]\[ -4x^3 - 3x^2 - 10x - 4 \][/tex]
Hence, filling in the missing justifications, the correct order is:
Distributive Property; Combine Like Terms; Commutative Property of Addition