What are the vertex and [tex]\(x\)[/tex]-intercepts of the graph of [tex]\(y=x^2-6x-7\)[/tex]?

Select one answer for the vertex and one for the [tex]\(x\)[/tex]-intercepts.

A. [tex]\(x\)[/tex]-intercepts: [tex]\((-1,0), (7,0)\)[/tex]

B. [tex]\(x\)[/tex]-intercepts: [tex]\((1,0), (7,0)\)[/tex]

C. Vertex: [tex]\((-3,20)\)[/tex]

D. Vertex: [tex]\((3,20)\)[/tex]

E. [tex]\(x\)[/tex]-intercepts: [tex]\((1,0), (-7,0)\)[/tex]

F. Vertex: [tex]\((3,-16)\)[/tex]



Answer :

To find the vertex and [tex]\( x \)[/tex]-intercepts of the graph of the quadratic equation [tex]\( y = x^2 - 6x - 7 \)[/tex], we follow these steps:

1. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts of a graph are the points where the equation equals zero ([tex]\( y = 0 \)[/tex]). Thus, we solve the equation:
[tex]\[ x^2 - 6x - 7 = 0 \][/tex]

Solving this quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ (x + 1)(x - 7) = 0 \][/tex]

This gives two solutions:
[tex]\[ x + 1 = 0 \Rightarrow x = -1 \][/tex]
and
[tex]\[ x - 7 = 0 \Rightarrow x = 7 \][/tex]

So, the [tex]\( x \)[/tex]-intercepts are:
[tex]\[ (-1, 0) \text{ and } (7, 0) \][/tex]

2. Finding the vertex:
The vertex of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] is given by the formula for the vertex [tex]\( x \)[/tex]-coordinate:
[tex]\[ x = -\frac{b}{2a} \][/tex]

For our equation [tex]\( y = x^2 - 6x - 7 \)[/tex], we have [tex]\( a = 1 \)[/tex] and [tex]\( b = -6 \)[/tex]. Plugging these values into the formula:
[tex]\[ x = -\frac{-6}{2 \cdot 1} = \frac{6}{2} = 3 \][/tex]

Now, to find the [tex]\( y \)[/tex]-coordinate of the vertex, we substitute [tex]\( x = 3 \)[/tex] back into the equation:
[tex]\[ y = (3)^2 - 6(3) - 7 \][/tex]
[tex]\[ y = 9 - 18 - 7 \][/tex]
[tex]\[ y = -16 \][/tex]

So, the vertex is:
[tex]\[ (3, -16) \][/tex]

Based on these calculations:
- The [tex]\( x \)[/tex]-intercepts are [tex]\((-1, 0)\)[/tex] and [tex]\( (7, 0) \)[/tex].
- The vertex is [tex]\( (3, -16) \)[/tex].

Therefore:
- For the [tex]\( x \)[/tex]-intercepts, the correct answer is:
[tex]\[ A. \text{ } x\text{-intercepts: } (-1, 0), (7, 0) \][/tex]

- For the vertex, the correct answer is:
[tex]\[ F. \text{ } Vertex: (3, -16) \][/tex]