Question 2 (Multiple Choice, Worth 2 points)
(One-Step Inequalities MC)

Write and solve the inequality that represents [tex]$-\frac{1}{3}$[/tex] is greater than or equal to the product of [tex]$-\frac{4}{5}$[/tex] and a number.

A. [tex]$-\frac{1}{3}\ \textgreater \ -\frac{4}{5} y$[/tex] where [tex]$y \leq-\frac{4}{15}$[/tex]

B. [tex]$-\frac{1}{3} \geq-\frac{4}{5} y$[/tex] where [tex]$y \geq \frac{5}{12}$[/tex]

C. [tex]$-\frac{4}{5} \geq-\frac{1}{3} y$[/tex] where [tex]$y \leq-\frac{5}{12}$[/tex]

D. [tex]$-\frac{4}{5} \leq-\frac{1}{3} y$[/tex] where [tex]$y \geq \frac{4}{15}$[/tex]



Answer :

Let's work through the inequality step by step to solve it:

1. Given inequality:
[tex]\[-\frac{1}{3} \geq -\frac{4}{5} y\][/tex]

2. Isolate [tex]\( y \)[/tex]:
We need to get [tex]\( y \)[/tex] by itself. To do this, we will divide both sides of the inequality by [tex]\(-\frac{4}{5}\)[/tex]. Remember, when we divide or multiply both sides of an inequality by a negative number, the direction of the inequality changes.

3. Divide by [tex]\(-\frac{4}{5}\)[/tex]:
[tex]\[ \frac{-\frac{1}{3}}{-\frac{4}{5}} \leq y \][/tex]

4. Simplify the division:
[tex]\[ \frac{1}{3} \times \frac{5}{4} \leq y \][/tex]
This simplifies to:
[tex]\[ \frac{1 \times 5}{3 \times 4} \leq y \][/tex]
[tex]\[ \frac{5}{12} \leq y \][/tex]

5. Write the inequality in standard form:
[tex]\[ y \geq \frac{5}{12} \][/tex]

Now we will match this result with the given multiple choice answers:

- First Option: [tex]\(-\frac{1}{3}>-\frac{4}{5} y\)[/tex] where [tex]\(y \leq -\frac{4}{15}\)[/tex] (Doesn't match)
- Second Option: [tex]\(-\frac{1}{3} \geq -\frac{4}{5} y\)[/tex] where [tex]\(y \geq \frac{5}{12}\)[/tex] (Matches)
- Third Option: [tex]\(-\frac{4}{5} \geq -\frac{1}{3} y\)[/tex] where [tex]\(y \leq -\frac{5}{12}\)[/tex] (Doesn't match)
- Fourth Option: [tex]\(-\frac{4}{5} \leq -\frac{1}{3} y\)[/tex] where [tex]\(y \geq \frac{4}{15}\)[/tex] (Doesn't match)

The correct answer is:
[tex]\[ \boxed{2, \text{ "y} \geq \frac{\text{5}}{\text{12}}\text{"}} \][/tex]