Answered

1. Given the function [tex]$f(x) = 3x - 5$[/tex], find [tex]$f(4)$[/tex].

Substitute 4 into the function in place of [tex][tex]$x$[/tex][/tex]: [tex]$f(4) = 3(4) - 5 = 7$[/tex].
This answer can be thought of as the ordered pair [tex]$(4, 7)$[/tex].

2. Find the value of [tex]$h(h) = 3h^2 - 2h + 1$[/tex] when [tex][tex]$h = -3$[/tex][/tex].

Substitute -3 into the function in place of [tex]$h$[/tex]: [tex]$h(-3) = 3(-3)^2 - 2(-3) + 1$[/tex].

3. Find [tex][tex]$g(2w)$[/tex][/tex] when [tex]$g(x) = x^2 - 2x + 1$[/tex].

When substituting expressions like [tex]$2w$[/tex] into a function, using parentheses helps prevent algebraic errors. For this problem, use [tex][tex]$g(2w)$[/tex][/tex]:

[tex]g(2w) = (2w)^2 - 2(2w) + 1 = 4w^2 - 4w + 1[/tex].



Answer :

Let's break down the solution to each part of the problem step-by-step:

### Part 1: Calculation of [tex]\( f(4) \)[/tex]
We are given the function [tex]\( f(x) = 3x - 5 \)[/tex].

To find [tex]\( f(4) \)[/tex]:

1. Substitute [tex]\( 4 \)[/tex] into the function:
[tex]\[ f(4) = 3(4) - 5 \][/tex]

2. Simplify the expression:
[tex]\[ f(4) = 12 - 5 = 7 \][/tex]

So, [tex]\( f(4) = 7 \)[/tex].

This result indicates that the value of the function at [tex]\( x=4 \)[/tex] is [tex]\( 7 \)[/tex], which can be represented as the ordered pair [tex]\( (4, 7) \)[/tex].

### Part 2: Calculation of [tex]\( h(-3) \)[/tex]
We are given the function [tex]\( h(h) = 3h^2 - 2h + 1 \)[/tex].

To find [tex]\( h(-3) \)[/tex]:

1. Substitute [tex]\( -3 \)[/tex] into the function:
[tex]\[ h(-3) = 3(-3)^2 - 2(-3) + 1 \][/tex]

2. Simplify the expression step-by-step:
[tex]\[ h(-3) = 3(9) + 6 + 1 \][/tex]
[tex]\[ h(-3) = 27 + 6 + 1 = 34 \][/tex]

So, [tex]\( h(-3) = 34 \)[/tex].

This result indicates that the value of the function at [tex]\( h = -3 \)[/tex] is [tex]\( 34 \)[/tex].

### Part 3: Calculation of [tex]\( g(2) \)[/tex]
We are given the function [tex]\( g(x) = x^2 - 2x + 1 \)[/tex].

To find [tex]\( g(2) \)[/tex]:

1. Substitute [tex]\( 2 \)[/tex] into the function:
[tex]\[ g(2) = 2^2 - 2(2) + 1 \][/tex]

2. Simplify the expression step-by-step:
[tex]\[ g(2) = 4 - 4 + 1 = 1 \][/tex]

So, [tex]\( g(2) = 1 \)[/tex].

This result indicates that the value of the function at [tex]\( x=2 \)[/tex] is [tex]\( 1 \)[/tex].

### Summary
The results for each part are:
1. [tex]\( f(4) = 7 \)[/tex]
2. [tex]\( h(-3) = 34 \)[/tex]
3. [tex]\( g(2) = 1 \)[/tex]

These calculations show the specific values for the given functions at the provided inputs.