[tex]$\begin{array}{c}
\text{Luneta} = \{\$[/tex]560 - [(0.50)(\[tex]$560)]\}\left[\frac{2}{6}(660)\right] \\
\text{Luneta} = \{\$[/tex]560 - [\[tex]$280]\}\left[\frac{2}{6}(660)\right] \\
\text{Luneta} = \$[/tex]280 \left[\frac{2}{6}(660)\right] \\
\text{Luneta} = \[tex]$280 \left[\frac{220}{3}\right] \\
\text{Luneta} = \$[/tex]280 \times 73.33 \\
\text{Luneta} = \[tex]$20,533.33
\end{array}$[/tex]



Answer :

Let's break down the problem step-by-step to find the solution.

1. Initial Value:
The starting value is [tex]$\$[/tex]560[tex]$. 2. Percentage Reduction: The value is reduced by 50%. To find the reduction, we calculate \(0.50 \times 560\). \(0.50 \times 560 = 280\) 3. Reduced Value: Subtract the reduction from the initial value: \(560 - 280 = 280\) 4. Factor: We then multiply the reduced value by the factor \( \frac{2}{6} \): \(\frac{2}{6} = \frac{1}{3}\) 5. Multiplying Factor with Multiplier Value: The next step is to multiply the factor by 660: \(\frac{1}{3} \times 660 = 220\) 6. Final Value Calculation: Finally, we multiply the reduced value by the product obtained from the previous step: \(280 \times 220 = 61600\) So, the reduced value is \(280\) and the final calculated result is \(61600\). Therefore: \[ \begin{array}{c}\text { Luneta } = \$[/tex] 560 - [(0.50)(\[tex]$ 560)] \\ \text { Luneta } = \$[/tex] 560 - \[tex]$ 280 \\ \text { Luneta } = \$[/tex] 280 \\
\text { Luneta final} = \[tex]$ 280 \times \left(\frac{2}{6} \times 660\right) \\ \text { Luneta final} = \$[/tex] 280 \times 220 = \$ 61600 \end{array}
\]

The final reduced and then calculated value carrying through step-by-step is:
[tex]\[ \boxed{(280.0, 61600.0)} \][/tex]