The numerical expression [tex]\frac{1}{4} \times (7 \times 6 + 2) - 5[/tex] is evaluated as shown.

Step 1: [tex]\frac{1}{4} \times (7 \times 8) - 5[/tex]
Step 2: [tex]\frac{1}{4} \times 56 - 5[/tex]
Step 3: 14 - 5
Step 4: 9

In which step does a mistake first appear?

A. Step 1
B. Step 2
C. Step 3
D. Step 4



Answer :

To determine where the mistake first appears, let's carefully examine each step and compare it to the correct mathematical procedures.

Given expression:

[tex]\[ \frac{1}{4} \times (7 \times 6 + 2) - 5 \][/tex]

### Step-by-Step Evaluation

1. Evaluate inside the parentheses:

[tex]\[ 7 \times 6 + 2 \][/tex]

Calculate [tex]\(7 \times 6\)[/tex]:

[tex]\[ 7 \times 6 = 42 \][/tex]

Add 2:

[tex]\[ 42 + 2 = 44 \][/tex]

The expression inside the parentheses is 44, so now we have:

[tex]\[ \frac{1}{4} \times 44 - 5 \][/tex]

2. Multiply by [tex]\(\frac{1}{4}\)[/tex]:

[tex]\[ \frac{1}{4} \times 44 \][/tex]

Dividing 44 by 4:

[tex]\[ 44 \div 4 = 11 \][/tex]

Now the expression simplifies to:

[tex]\[ 11 - 5 \][/tex]

3. Subtract 5:

[tex]\[ 11 - 5 \][/tex]

Subtract to get the final value:

[tex]\[ 11 - 5 = 6 \][/tex]

Based on the correct steps outlined above, when we compare them to the steps provided in the options:

- Step 1:

The original step shows:

[tex]\[ \frac{1}{4} \times (7 \times 8) - 5 \][/tex]

Here, instead of correctly calculating [tex]\(7 \times 6 + 2\)[/tex], [tex]\(7 \times 6\)[/tex] was mistakenly changed to [tex]\(7 \times 8\)[/tex].

Thus, the correct answer is:

A Step 1