Combine like terms to create an equivalent expression.

Enter any coefficients as simplified proper or improper fractions or integers.

[tex]
-\frac{2}{3} p + \frac{1}{5} - 1 + \frac{5}{6} p
[/tex]



Answer :

Let's combine like terms in the expression:

[tex]\[ -\frac{2}{3}p + \frac{1}{5} - 1 + \frac{5}{6}p \][/tex]

1. Identify and group the like terms:
- Coefficients of [tex]\( p \)[/tex]: [tex]\(-\frac{2}{3}p\)[/tex] and [tex]\(\frac{5}{6}p\)[/tex].
- Constant terms: [tex]\(\frac{1}{5}\)[/tex] and [tex]\(-1\)[/tex].

2. Combine the coefficients of [tex]\( p \)[/tex]:
[tex]\[ -\frac{2}{3} + \frac{5}{6} \][/tex]
To combine these fractions, we need a common denominator. The common denominator for 3 and 6 is 6.

Converting each term to have this common denominator:
[tex]\[ -\frac{2}{3} = -\frac{4}{6} \][/tex]
[tex]\[ \frac{5}{6} = \frac{5}{6} \][/tex]

Adding these fractions together:
[tex]\[ -\frac{4}{6} + \frac{5}{6} = \frac{1}{6} \][/tex]

So, the combined coefficient for [tex]\( p \)[/tex] is [tex]\( \frac{1}{6} \)[/tex].

3. Combine the constant terms:
[tex]\[ \frac{1}{5} - 1 \][/tex]
Writing [tex]\(-1\)[/tex] as a fraction with a common denominator of 5:
[tex]\[ -1 = -\frac{5}{5} \][/tex]

Adding these fractions together:
[tex]\[ \frac{1}{5} - \frac{5}{5} = \frac{1 - 5}{5} = -\frac{4}{5} \][/tex]

So, the combined constant term is [tex]\( -\frac{4}{5} \)[/tex].

4. Combine all the terms:
[tex]\[ \frac{1}{6}p - \frac{4}{5} \][/tex]

Thus, the equivalent expression after combining like terms is:

[tex]\[ \frac{1}{6}p - \frac{4}{5} \][/tex]