Triangle [tex]\( NMO \)[/tex] is drawn with vertices [tex]\( N(-5,2), M(-2,1), O(-3,3) \)[/tex]. Determine the image vertices of [tex]\( N'M'O' \)[/tex] if the preimage is reflected over [tex]\( x = -5 \)[/tex].

A. [tex]\( N' (5, 2), M' (2, 1), O' (3, 3) \)[/tex]
B. [tex]\( N' (2, -5), M' (1, -2), O' (3, -3) \)[/tex]
C. [tex]\( N' (0, 2), M' (3, 1), O' (2, 3) \)[/tex]
D. [tex]\( N' (-5, 2), M' (-8, 1), O' (-7, 3) \)[/tex]



Answer :

To determine the image vertices of triangle [tex]\(NMO\)[/tex] after reflecting it over the line [tex]\(x = -5\)[/tex] we will follow these steps:

1. Identify the coordinates of the vertices:
- [tex]\( N(-5, 2) \)[/tex]
- [tex]\( M(-2, 1) \)[/tex]
- [tex]\( O(-3, 3) \)[/tex]

2. Reflect each point over the line [tex]\(x = -5\)[/tex]:

- For a point [tex]\( (x, y) \)[/tex] reflected over the line [tex]\( x = -5 \)[/tex], the new [tex]\( x \)[/tex]-coordinate is determined by:
[tex]\[ x' = 2 \cdot (-5) - x \][/tex]
while the [tex]\( y \)[/tex]-coordinate remains the same.

3. Calculate the new coordinates for each vertex:

- Reflecting [tex]\( N(-5, 2) \)[/tex]:
[tex]\[ x' = 2 \cdot (-5) - (-5) = -10 + 5 = -5 \][/tex]
Thus, [tex]\( N' = (-5, 2) \)[/tex].

- Reflecting [tex]\( M(-2, 1) \)[/tex]:
[tex]\[ x' = 2 \cdot (-5) - (-2) = -10 + 2 = -8 \][/tex]
Thus, [tex]\( M' = (-8, 1) \)[/tex].

- Reflecting [tex]\( O(-3, 3) \)[/tex]:
[tex]\[ x' = 2 \cdot (-5) - (-3) = -10 + 3 = -7 \][/tex]
Thus, [tex]\( O' = (-7, 3) \)[/tex].

4. Compile the new coordinates:
- [tex]\( N' = (-5, 2) \)[/tex]
- [tex]\( M' = (-8, 1) \)[/tex]
- [tex]\( O' = (-7, 3) \)[/tex]

Therefore, the correct image vertices after reflecting triangle [tex]\(NMO\)[/tex] over the line [tex]\(x = -5\)[/tex] are [tex]\(N'(-5, 2)\)[/tex], [tex]\(M'(-8, 1)\)[/tex], and [tex]\(O'(-7, 3)\)[/tex].

The answer is:
[tex]\[ N'(-5, 2), M'(-8, 1), O'(-7, 3) \][/tex]