Take the Quick Check below.

Quick Check

Write each fraction in simplest form. If the fraction is already in simplest form, write "simplest form."

1. [tex]\frac{24}{36}[/tex]
2. [tex]\frac{34}{85}[/tex]
3. [tex]\frac{36}{12}[/tex]
4. [tex]\frac{27}{45}[/tex]
5. [tex]\frac{11}{18}[/tex]
6. [tex]\frac{5}{65}[/tex]
7. [tex]\frac{19}{1}[/tex]
8. [tex]\frac{16}{44}[/tex]
9. [tex]\frac{64}{88}[/tex]



Answer :

To simplify each fraction, we will reduce it by dividing both the numerator and the denominator by their greatest common divisor (GCD). Let's simplify each fraction step by step.

1. Fraction: [tex]\(\frac{24}{36}\)[/tex]
- The GCD of 24 and 36 is 12.
- Dividing both the numerator and the denominator by 12, we get:
[tex]\[ \frac{24 \div 12}{36 \div 12} = \frac{2}{3} \][/tex]
- Simplest form: [tex]\(\frac{2}{3}\)[/tex]

2. Fraction: [tex]\(\frac{34}{85}\)[/tex]
- The GCD of 34 and 85 is 17.
- Dividing both the numerator and the denominator by 17, we get:
[tex]\[ \frac{34 \div 17}{85 \div 17} = \frac{2}{5} \][/tex]
- Simplest form: [tex]\(\frac{2}{5}\)[/tex]

3. Fraction: [tex]\(\frac{36}{12}\)[/tex]
- The GCD of 36 and 12 is 12.
- Dividing both the numerator and the denominator by 12, we get:
[tex]\[ \frac{36 \div 12}{12 \div 12} = \frac{3}{1} \][/tex]
- Simplest form: [tex]\(\frac{3}{1}\)[/tex]

4. Fraction: [tex]\(\frac{27}{45}\)[/tex]
- The GCD of 27 and 45 is 9.
- Dividing both the numerator and the denominator by 9, we get:
[tex]\[ \frac{27 \div 9}{45 \div 9} = \frac{3}{5} \][/tex]
- Simplest form: [tex]\(\frac{3}{5}\)[/tex]

5. Fraction: [tex]\(\frac{11}{18}\)[/tex]
- The GCD of 11 and 18 is 1 (since they are relatively prime).
- Therefore, [tex]\(\frac{11}{18}\)[/tex] is already in its simplest form.
- Simplest form: [tex]\(\frac{11}{18}\)[/tex]

6. Fraction: [tex]\(\frac{5}{65}\)[/tex]
- The GCD of 5 and 65 is 5.
- Dividing both the numerator and the denominator by 5, we get:
[tex]\[ \frac{5 \div 5}{65 \div 5} = \frac{1}{13} \][/tex]
- Simplest form: [tex]\(\frac{1}{13}\)[/tex]

7. Fraction: [tex]\(\frac{19}{1}\)[/tex]
- The GCD of 19 and 1 is 1.
- Therefore, [tex]\(\frac{19}{1}\)[/tex] is already in its simplest form.
- Simplest form: [tex]\(\frac{19}{1}\)[/tex]

8. Fraction: [tex]\(\frac{16}{44}\)[/tex]
- The GCD of 16 and 44 is 4.
- Dividing both the numerator and the denominator by 4, we get:
[tex]\[ \frac{16 \div 4}{44 \div 4} = \frac{4}{11} \][/tex]
- Simplest form: [tex]\(\frac{4}{11}\)[/tex]

9. Fraction: [tex]\(\frac{64}{88}\)[/tex]
- The GCD of 64 and 88 is 8.
- Dividing both the numerator and the denominator by 8, we get:
[tex]\[ \frac{64 \div 8}{88 \div 8} = \frac{8}{11} \][/tex]
- Simplest form: [tex]\(\frac{8}{11}\)[/tex]

In summary, the simplified forms of the fractions are:

1. [tex]\(\frac{24}{36} = \frac{2}{3}\)[/tex]
2. [tex]\(\frac{34}{85} = \frac{2}{5}\)[/tex]
3. [tex]\(\frac{36}{12} = \frac{3}{1}\)[/tex]
4. [tex]\(\frac{27}{45} = \frac{3}{5}\)[/tex]
5. [tex]\(\frac{11}{18} = \frac{11}{18}\)[/tex]
6. [tex]\(\frac{5}{65} = \frac{1}{13}\)[/tex]
7. [tex]\(\frac{19}{1} = \frac{19}{1}\)[/tex]
8. [tex]\(\frac{16}{44} = \frac{4}{11}\)[/tex]
9. [tex]\(\frac{64}{88} = \frac{8}{11}\)[/tex]