Select the best answer for the question.

The sum of [tex]\frac{1}{6}, \frac{2}{3},[/tex] and [tex]\frac{1}{4}[/tex] is:

A. [tex]\frac{13}{12}[/tex], or [tex]\frac{11}{12}[/tex].
B. [tex]\frac{2}{72}[/tex], or [tex]\frac{1}{36}[/tex].
C. [tex]\frac{11}{12}[/tex].
D. [tex]\frac{4}{12}[/tex], or [tex]\frac{1}{3}[/tex].



Answer :

To find the sum of the fractions [tex]\( \frac{1}{6} \)[/tex], [tex]\( \frac{2}{3} \)[/tex], and [tex]\( \frac{1}{4} \)[/tex], follow these steps:

1. Find a common denominator:
- The denominators of the fractions are 6, 3, and 4.
- The least common multiple (LCM) of 6, 3, and 4 is 12.

2. Convert each fraction to have a common denominator of 12:
- [tex]\( \frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12} \)[/tex]
- [tex]\( \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \)[/tex]
- [tex]\( \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12} \)[/tex]

3. Add the fractions:
[tex]\[ \frac{2}{12} + \frac{8}{12} + \frac{3}{12} = \frac{2 + 8 + 3}{12} = \frac{13}{12} \][/tex]

4. Simplify if needed:
[tex]\(\frac{13}{12}\)[/tex] is already in its simplest form.

So, the sum of [tex]\( \frac{1}{6} \)[/tex], [tex]\( \frac{2}{3} \)[/tex], and [tex]\( \frac{1}{4} \)[/tex] is [tex]\( \frac{13}{12} \)[/tex].

Given the multiple-choice options, the best answer is:

A. [tex]\( \frac{13}{12} \)[/tex]