Select the best answer for the question.

13. Express the fractions [tex]\frac{1}{2}, \frac{3}{16},[/tex] and [tex]\frac{7}{8}[/tex] with an LCD.

A. [tex]\frac{1}{32}, \frac{3}{32},[/tex] and [tex]\frac{7}{32}[/tex]

B. [tex]\frac{1}{4}, \frac{3}{4},[/tex] and [tex]\frac{7}{4}[/tex]

C. [tex]\frac{8}{16}, \frac{3}{16},[/tex] and [tex]\frac{14}{16}[/tex]

D. [tex]\frac{4}{8}, \frac{6}{8},[/tex] and [tex]\frac{14}{8}[/tex]



Answer :

To express the fractions [tex]$\frac{1}{2}$[/tex], [tex]$\frac{3}{16}$[/tex], and [tex]$\frac{7}{8}$[/tex] with a common denominator or LCD (Least Common Denominator), let’s follow these steps:

1. Identify the denominators of all three fractions. The denominators are [tex]$2$[/tex], [tex]$16$[/tex], and [tex]$8$[/tex].

2. Determine the least common multiple (LCM) of the denominators [tex]$2$[/tex], [tex]$16$[/tex], and [tex]$8$[/tex]. Analyzing the numbers, it turns out that [tex]$16$[/tex] is the smallest number that is a multiple of all three denominators.

3. Convert each fraction to an equivalent fraction with [tex]$16$[/tex] as the new denominator:

- For [tex]$\frac{1}{2}$[/tex]:
[tex]\[ \frac{1}{2} = \frac{1 \times 8}{2 \times 8} = \frac{8}{16} \][/tex]

- For [tex]$\frac{3}{16}$[/tex]:
[tex]\[ \frac{3}{16} = \frac{3}{16} \][/tex]
(since the denominator is already [tex]$16$[/tex], it remains the same)

- For [tex]$\frac{7}{8}$[/tex]:
[tex]\[ \frac{7}{8} = \frac{7 \times 2}{8 \times 2} = \frac{14}{16} \][/tex]

4. The equivalent fractions with the common denominator should now be:
- [tex]$\frac{8}{16}$[/tex]
- [tex]$\frac{3}{16}$[/tex]
- [tex]$\frac{14}{16}$[/tex]

Hence, the best answer that expresses the given fractions with the LCD is:

C. [tex]$\frac{8}{16}$[/tex], [tex]$\frac{3}{16}$[/tex], and [tex]$\frac{14}{16}$[/tex]