The Pearson correlation coefficient for a relationship between two variables from a data sample of [tex]$n=9$[/tex] was found to be [tex]$r \approx -0.677$[/tex]. Is this relationship statistically significant at the [tex][tex]$\alpha=0.05$[/tex][/tex] level?
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Critical Values of the Pearson Correlation Coefficient} \\
\hline [tex]$n$[/tex] & [tex]$\alpha = 0.05$[/tex] & [tex]$\alpha = 0.01$[/tex] \\
\hline 4 & 0.950 & 0.990 \\
\hline 5 & 0.878 & 0.959 \\
\hline 6 & 0.811 & 0.917 \\
\hline 7 & 0.754 & 0.875 \\
\hline 8 & 0.707 & 0.834 \\
\hline 9 & 0.666 & 0.798 \\
\hline 10 & 0.632 & 0.765 \\
\hline 11 & 0.602 & 0.735 \\
\hline 12 & 0.576 & 0.708 \\
\hline
\end{tabular}
Answer:
A. Yes, the linear relationship between the variables is statistically significant at the 0.05 level of significance, because [tex]$|r|\ \textgreater \ $[/tex] critical value.
B. Yes, the linear relationship between the variables is statistically significant at the 0.05 level of significance, because [tex]$r\ \textgreater \ 0$[/tex].
C. No, the linear relationship between the variables is not statistically significant at the 0.05 level of significance, because [tex][tex]$|r| \leq$[/tex][/tex] critical value.