Answer :

Certainly! Let's break down and solve the expression step by step:

[tex]\[ \left(9^2 + 1\right) - 2^4 \times \sqrt{16} + (12 + 3 \times 5) - 7 \][/tex]

### Step 1: Calculate [tex]\(9^2 + 1\)[/tex]

First, compute [tex]\(9^2\)[/tex]:
[tex]\[ 9^2 = 81 \][/tex]

Now add 1 to the result:
[tex]\[ 9^2 + 1 = 81 + 1 = 82 \][/tex]

### Step 2: Calculate [tex]\(2^4 \times \sqrt{16}\)[/tex]

First, compute [tex]\(2^4\)[/tex]:
[tex]\[ 2^4 = 16 \][/tex]

Next, compute [tex]\(\sqrt{16}\)[/tex]:
[tex]\[ \sqrt{16} = 4 \][/tex]

Now multiply the two results together:
[tex]\[ 2^4 \times \sqrt{16} = 16 \times 4 = 64 \][/tex]

### Step 3: Calculate [tex]\(12 + 3 \times 5\)[/tex]

First, compute [tex]\(3 \times 5\)[/tex]:
[tex]\[ 3 \times 5 = 15 \][/tex]

Now add 15 to 12:
[tex]\[ 12 + 3 \times 5 = 12 + 15 = 27 \][/tex]

### Step 4: Combine the calculated values

Now, substitute the calculated values back into the original expression:
[tex]\[ (82) - (64) + (27) - (7) \][/tex]

Perform the subtraction and addition steps in order:

1. Subtract 64 from 82:
[tex]\[ 82 - 64 = 18 \][/tex]

2. Add 27 to 18:
[tex]\[ 18 + 27 = 45 \][/tex]

3. Finally, subtract 7 from 45:
[tex]\[ 45 - 7 = 38 \][/tex]

### Conclusion

Thus, the value of the expression [tex]\(\left(9^2 + 1\right) - 2^4 \times \sqrt{16} + (12 + 3 \times 5) - 7\)[/tex] is:
[tex]\[ \boxed{38} \][/tex]