Use the grouping method to factor this polynomial completely.

[tex]\[3x^3 + 12x^2 + 2x + 8\][/tex]

A. [tex]\(\left(3x^2 + 4\right)(x + 4)\)[/tex]

B. [tex]\(\left(3x^2 + 4\right)(x + 2)\)[/tex]

C. [tex]\(\left(3x^2 + 2\right)(x + 4)\)[/tex]

D. [tex]\(\left(3x^2 + 2\right)(x + 2)\)[/tex]



Answer :

To factor the polynomial [tex]\(3x^3 + 12x^2 + 2x + 8\)[/tex] completely using the grouping method, follow these steps:

1. Group the terms: We start by grouping the terms in pairs to make it easier to factor by grouping.
[tex]\[ 3x^3 + 12x^2 + 2x + 8 = (3x^3 + 12x^2) + (2x + 8) \][/tex]

2. Factor out the greatest common factor (GCF) from each pair of terms:
- For the first group, [tex]\(3x^3 + 12x^2\)[/tex], the GCF is [tex]\(3x^2\)[/tex]. So, we factor [tex]\(3x^2\)[/tex] out:
[tex]\[ 3x^3 + 12x^2 = 3x^2(x + 4) \][/tex]
- For the second group, [tex]\(2x + 8\)[/tex], the GCF is [tex]\(2\)[/tex]. So, we factor [tex]\(2\)[/tex] out:
[tex]\[ 2x + 8 = 2(x + 4) \][/tex]

Now our expression looks like this:
[tex]\[ 3x^2(x + 4) + 2(x + 4) \][/tex]

3. Factor out the common binomial factor: Notice that both terms now contain the common binomial factor [tex]\((x + 4)\)[/tex]. We factor [tex]\((x + 4)\)[/tex] out:
[tex]\[ 3x^2(x + 4) + 2(x + 4) = (x + 4)(3x^2 + 2) \][/tex]

So, the polynomial [tex]\(3x^3 + 12x^2 + 2x + 8\)[/tex] factors completely to [tex]\((x + 4)(3x^2 + 2)\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{C. (3x^2 + 2)(x + 4)} \][/tex]