Simplify by factoring.

[tex]\[ \sqrt{150} = \square \sqrt{150} \][/tex]

(Type an exact answer using LaTeX formatting.)



Answer :

To simplify the expression [tex]\(\sqrt{150}\)[/tex] by factoring, we need to break down the number 150 into its prime factors and then simplify the square root.

### Step-by-Step Solution:

1. Factorizing [tex]\(150\)[/tex] into Prime Factors:
- Start with the smallest prime number [tex]\(2\)[/tex]:
[tex]\[ 150 \div 2 = 75 \][/tex]
So, [tex]\(2\)[/tex] is a factor and we have [tex]\(75\)[/tex] left.
- Next, factor [tex]\(75\)[/tex] using the next smallest prime number [tex]\(3\)[/tex]:
[tex]\[ 75 \div 3 = 25 \][/tex]
So, [tex]\(3\)[/tex] is a factor and we have [tex]\(25\)[/tex] left.
- Finally, factor [tex]\(25\)[/tex] using [tex]\(5\)[/tex]:
[tex]\[ 25 \div 5 = 5 \][/tex]
and
[tex]\[ 5 \div 5 = 1 \][/tex]
So, [tex]\(5\)[/tex] is a factor, and we are left with [tex]\(1\)[/tex], which means the number has been fully factorized.

2. Putting it All Together (Prime Factorization of [tex]\(150\)[/tex]):
[tex]\[ 150 = 2 \times 3 \times 5 \times 5 \][/tex]
We can group the pairs of identical factors:
[tex]\[ 150 = 2 \times 3 \times 5^2 \][/tex]

3. Simplifying the Square Root:
- The square root of a product is the product of the square roots:
[tex]\[ \sqrt{150} = \sqrt{2 \times 3 \times 5^2} \][/tex]
- Use the property of square roots: [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:
[tex]\[ \sqrt{2 \times 3 \times 5^2} = \sqrt{2} \times \sqrt{3} \times \sqrt{5^2} \][/tex]
- Since [tex]\(\sqrt{5^2} = 5\)[/tex]:
[tex]\[ \sqrt{2} \times \sqrt{3} \times 5 \][/tex]

4. Final Simplified Form:
[tex]\[ \sqrt{150} = 5 \sqrt{6} \][/tex]

Therefore, the simplified form of [tex]\(\sqrt{150}\)[/tex] is:

[tex]\[ \boxed{5\sqrt{6}} \][/tex]