Using the properties of exponents, which expression is equivalent to [tex]$x^{\frac{1}{6}} \cdot x^{\frac{1}{6}}$[/tex]?

A. [tex]$\sqrt{x}$[/tex]
B. [tex]$\frac{1}{\sqrt[3]{x}}$[/tex]
C. [tex][tex]$\sqrt[3]{x}$[/tex][/tex]
D. [tex]$\sqrt[38]{x}$[/tex]



Answer :

To determine which expression is equivalent to [tex]\(x^{\frac{1}{6}} \cdot x^{\frac{1}{6}}\)[/tex], we can follow these steps:

1. Understand the properties of exponents: When multiplying two expressions with the same base, we add their exponents. This is given by:
[tex]\[ x^a \cdot x^b = x^{a + b} \][/tex]

2. Identify the exponents in the given expression: Here, we have [tex]\( x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \)[/tex]. Both exponents are [tex]\(\frac{1}{6}\)[/tex].

3. Add the exponents: According to the property mentioned in step 1, we add the exponents:
[tex]\[ \frac{1}{6} + \frac{1}{6} = \frac{2}{6} \][/tex]

4. Simplify the exponent: The fraction [tex]\(\frac{2}{6}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 2:
[tex]\[ \frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3} \][/tex]

5. Rewrite the expression: After simplifying, the expression becomes:
[tex]\[ x^{\frac{2}{6}} = x^{\frac{1}{3}} \][/tex]

6. Identify the equivalent expression: The expression [tex]\( x^{\frac{1}{3}} \)[/tex] is equivalent to the cube root of [tex]\(x\)[/tex]. This can be written as:
[tex]\[ \sqrt[3]{x} \][/tex]

Therefore, the expression equivalent to [tex]\( x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \)[/tex] is:
[tex]\[ \sqrt[3]{x} \][/tex]

So, the correct answer is:
[tex]\[ \sqrt[3]{x} \][/tex]