Using the properties of exponents, which expression is equivalent to [tex] \frac{x}{x^{\frac{3}{4}}} [/tex]?

A. [tex] x [/tex]

B. [tex] \frac{1}{\sqrt[4]{x}} [/tex]

C. [tex] \sqrt[4]{x} [/tex]

D. [tex] x^4 [/tex]



Answer :

Let's analyze the given expression [tex]\(\frac{x}{x^{\frac{3}{4}}}\)[/tex] using the properties of exponents.

When you divide exponential expressions with the same base, you subtract the exponents:

[tex]\[ \frac{x}{x^{\frac{3}{4}}} = x^{1 - \frac{3}{4}} \][/tex]

Simplifying the exponent:

[tex]\[ 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]

Therefore, the expression simplifies to:

[tex]\[ x^{\frac{1}{4}} \][/tex]

This can also be written as:

[tex]\[ \sqrt[4]{x} \][/tex]

So, the equivalent expression is [tex]\(\sqrt[4]{x}\)[/tex]. Thus, the correct answer is:

[tex]\[ \boxed{\sqrt[4]{x}} \][/tex]