Let's analyze the given expression [tex]\(\frac{x}{x^{\frac{3}{4}}}\)[/tex] using the properties of exponents.
When you divide exponential expressions with the same base, you subtract the exponents:
[tex]\[
\frac{x}{x^{\frac{3}{4}}} = x^{1 - \frac{3}{4}}
\][/tex]
Simplifying the exponent:
[tex]\[
1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4}
\][/tex]
Therefore, the expression simplifies to:
[tex]\[
x^{\frac{1}{4}}
\][/tex]
This can also be written as:
[tex]\[
\sqrt[4]{x}
\][/tex]
So, the equivalent expression is [tex]\(\sqrt[4]{x}\)[/tex]. Thus, the correct answer is:
[tex]\[
\boxed{\sqrt[4]{x}}
\][/tex]