Solve the following equation with a rational exponent:

[tex]\[ 2 x^{\frac{3}{2}} = 16 \][/tex]

A. 8
B. no solution
C. 4
D. 84



Answer :

To solve the equation [tex]\(2 x^{\frac{3}{2}} = 16\)[/tex], we'll follow these steps:

1. Isolate the term involving the variable:
[tex]\[ 2 x^{\frac{3}{2}} = 16 \][/tex]

2. Divide both sides by 2 to simplify the equation:
[tex]\[ x^{\frac{3}{2}} = \frac{16}{2} \][/tex]
[tex]\[ x^{\frac{3}{2}} = 8 \][/tex]

3. Undo the exponent [tex]\(\frac{3}{2}\)[/tex] by raising both sides to the power of [tex]\(\frac{2}{3}\)[/tex], since [tex]\(\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} = x^{1} = x\)[/tex]:
[tex]\[ \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} = 8^{\frac{2}{3}} \][/tex]
[tex]\[ x = 8^{\frac{2}{3}} \][/tex]

4. Simplify [tex]\(8^{\frac{2}{3}}\)[/tex]:
[tex]\[ 8^{\frac{2}{3}} = \left(2^3\right)^{\frac{2}{3}} \][/tex]
Using the rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left(2^3\right)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4 \][/tex]

Therefore, the solution to the equation [tex]\(2 x^{\frac{3}{2}} = 16\)[/tex] is:
[tex]\[ x = 4 \][/tex]