Answered

15. Using the formula [tex]$V=\pi r^2 h$[/tex], find [tex]$V$[/tex] when [tex][tex]$r$[/tex][/tex] is 3 centimeters and [tex]$h$[/tex] is 10 centimeters.

Answer: [tex]$\qquad$[/tex]



Answer :

To find the volume [tex]\(V\)[/tex] of a cylinder, we use the formula:

[tex]\[ V = \pi r^2 h \][/tex]

where:
- [tex]\( \pi \)[/tex] (pi) is approximately 3.14159,
- [tex]\( r \)[/tex] is the radius of the base of the cylinder,
- [tex]\( h \)[/tex] is the height of the cylinder.

Given:
- [tex]\( r = 3 \)[/tex] centimeters,
- [tex]\( h = 10 \)[/tex] centimeters.

First, we calculate [tex]\( r^2 \)[/tex]:

[tex]\[ r^2 = (3 \text{ cm})^2 = 9 \text{ cm}^2 \][/tex]

Next, we multiply [tex]\( r^2 \)[/tex] by [tex]\( h \)[/tex]:

[tex]\[ r^2 \times h = 9 \text{ cm}^2 \times 10 \text{ cm} = 90 \text{ cm}^3 \][/tex]

Now, we multiply this result by [tex]\( \pi \)[/tex]:

[tex]\[ V = \pi \times 90 \text{ cm}^3 \][/tex]

Thus, the volume [tex]\( V \)[/tex] of the cylinder is:

[tex]\[ V \approx 3.14159 \times 90 \text{ cm}^3 = 282.7433388230814 \text{ cm}^3 \][/tex]

So, the volume [tex]\( V \)[/tex] when [tex]\( r \)[/tex] is 3 centimeters and [tex]\( h \)[/tex] is 10 centimeters is approximately:

[tex]\[ 282.7433388230814 \text{ cm}^3 \][/tex]