noboa7
Answered

What is the quotient of [tex]$\frac{7^{-1}}{7^{-2}}$[/tex]?

A. [tex][tex]$\frac{1}{343}$[/tex][/tex]
B. [tex]$\frac{4}{7}$[/tex]
C. 7
D. 49



Answer :

To find the quotient of [tex]\(\frac{7^{-1}}{7^{-2}}\)[/tex], follow these steps:

1. Understand the property of exponents: [tex]\(a^{-m} = \frac{1}{a^m}\)[/tex]. Using this property, we can rewrite the exponents:
[tex]\[ 7^{-1} = \frac{1}{7^1} = \frac{1}{7} \][/tex]
[tex]\[ 7^{-2} = \frac{1}{7^2} = \frac{1}{49} \][/tex]

2. Substitute these values back into the original expression:
[tex]\[ \frac{7^{-1}}{7^{-2}} = \frac{\frac{1}{7}}{\frac{1}{49}} \][/tex]

3. Divide the two fractions. When you divide by a fraction, you multiply by its reciprocal:
[tex]\[ \frac{\frac{1}{7}}{\frac{1}{49}} = \frac{1}{7} \times 49 = \frac{49}{7} \][/tex]

4. Simplify the fraction:
[tex]\[ \frac{49}{7} = 7 \][/tex]

Hence, the quotient is [tex]\(7\)[/tex]. Therefore, the answer is:
[tex]\[ \boxed{7} \][/tex]