noboa7
Answered

Describe how [tex]\left(2^3\right)\left(2^{-4}\right)[/tex] can be simplified.

A. Multiply the bases and add the exponents. Then find the reciprocal and change the sign of the exponent.
B. Keep the same base and add the exponents. Then multiply by -1.
C. Keep the base and multiply the exponents. Then multiply by -1.
D. Add the exponents and keep the same base. Then find the reciprocal and change the sign of the exponent.



Answer :

Sure, let's simplify [tex]\((2^3)(2^{-4})\)[/tex] step-by-step.

1. Add the exponents and keep the same base:
When multiplying powers with the same base, you add the exponents:
[tex]\[ 2^3 \cdot 2^{-4} = 2^{3 + (-4)} \][/tex]
Simplifying the exponent:
[tex]\[ 3 + (-4) = -1 \][/tex]
So, we have:
[tex]\[ 2^{-1} \][/tex]

2. Simplify the expression [tex]\(2^{-1}\)[/tex]:
An exponent of [tex]\(-1\)[/tex] means you can take the reciprocal of the base:
[tex]\[ 2^{-1} = \frac{1}{2} \][/tex]
So, the simplified expression is:
[tex]\[ 2^{-1} = 0.5 \][/tex]

3. Find the reciprocal and change the sign of the exponent:
Taking the reciprocal of [tex]\(0.5\)[/tex]:
[tex]\[ \frac{1}{0.5} = 2 \][/tex]

Therefore, simplifying [tex]\((2^3)(2^{-4})\)[/tex] gives:
[tex]\[ \text{Combined Exponent: } -1 \][/tex]
[tex]\[ \text{Simplified Expression: } 0.5 \][/tex]
[tex]\[ \text{Reciprocal: } 2.0 \][/tex]

So, the final result is [tex]\(-1, 0.5, 2.0\)[/tex].

Other Questions