noboa7
Answered

Which expression is equivalent to [tex]$(10 x)^{-3}$[/tex]?

A. [tex]\frac{10}{x^3}[/tex]
B. [tex]\frac{1000}{x^3}[/tex]
C. [tex]\frac{1}{1000 x^3}[/tex]
D. [tex]\frac{1}{10 x^3}[/tex]



Answer :

Let's solve the problem step-by-step:

Given expression: [tex]\((10x)^{-3}\)[/tex]

First, we need to understand the negative exponent and how it applies to the expression inside the parentheses:

1. A negative exponent means that the base (in this case, [tex]\(10x\)[/tex]) is on the denominator.
2. The expression [tex]\((10x)^{-3}\)[/tex] can be rewritten as:

[tex]\[ \frac{1}{(10x)^3} \][/tex]

We need to simplify [tex]\((10x)^3\)[/tex] further:

3. When raising a product to a power, you raise each factor in the product to that power:

[tex]\[ (10x)^3 = 10^3 \cdot x^3 \][/tex]

4. Calculate [tex]\(10^3\)[/tex]:

[tex]\[ 10^3 = 10 \times 10 \times 10 = 1000 \][/tex]

Therefore,

[tex]\[ (10x)^3 = 1000 \cdot x^3 \][/tex]

5. Substitute this back into the fraction:

[tex]\[ \frac{1}{(10x)^3} = \frac{1}{1000 \cdot x^3} \][/tex]

So, the simplified expression is:

[tex]\[ \frac{1}{1000 x^3} \][/tex]

Therefore, the expression equivalent to [tex]\((10x)^{-3}\)[/tex] is:

[tex]\[ \boxed{\frac{1}{1000 x^3}} \][/tex]