noboa7
Answered

Which expression is equivalent to [tex]$5 y^{-3}$[/tex]?

A. [tex]\frac{1}{125 y^3}[/tex]
B. [tex]\frac{1}{5 y^3}[/tex]
C. [tex]\frac{5}{y^3}[/tex]
D. [tex]\frac{125}{y^3}[/tex]



Answer :

To determine which expression is equivalent to [tex]\( 5 y^{-3} \)[/tex], we need to perform a series of algebraic manipulations. Let's break it down step-by-step.

1. Understanding Negative Exponents:
The expression [tex]\( y^{-3} \)[/tex] can be rewritten using the property of negative exponents, which states that:
[tex]\[ y^{-n} = \frac{1}{y^n} \][/tex]

2. Applying the Negative Exponent Property:
Applying this property to [tex]\( y^{-3} \)[/tex], we get:
[tex]\[ y^{-3} = \frac{1}{y^3} \][/tex]

3. Multiplying by 5:
Now, multiply the result by 5, as in the original expression [tex]\( 5 y^{-3} \)[/tex]:
[tex]\[ 5 y^{-3} = 5 \cdot \frac{1}{y^3} \][/tex]

4. Simplifying the Expression:
Simplifying the multiplication, we have:
[tex]\[ 5 \cdot \frac{1}{y^3} = \frac{5}{y^3} \][/tex]

Thus, the expression equivalent to [tex]\( 5 y^{-3} \)[/tex] is:

[tex]\[ \frac{5}{y^3} \][/tex]

Therefore, the correct expression from the given choices is:
[tex]\[ \boxed{\frac{5}{y^3}} \][/tex]