noboa7
Answered

Which expression is equivalent to [tex]$9^{-2}$[/tex]?

A. [tex]-81[/tex]
B. [tex]-18[/tex]
C. [tex]\frac{1}{81}[/tex]
D. [tex]\frac{1}{18}[/tex]



Answer :

To determine which expression is equivalent to [tex]\( 9^{-2} \)[/tex], we need to understand how negative exponents work.

1. Recall that a negative exponent indicates a reciprocal. Specifically, [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex].

2. Apply this rule to the expression [tex]\( 9^{-2} \)[/tex]:
[tex]\[ 9^{-2} = \frac{1}{9^2} \][/tex]

3. Calculate [tex]\( 9^2 \)[/tex]:
[tex]\[ 9^2 = 9 \times 9 = 81 \][/tex]

4. Substitute this back into the reciprocal:
[tex]\[ 9^{-2} = \frac{1}{81} \][/tex]

Therefore, the equivalent expression to [tex]\( 9^{-2} \)[/tex] is:
[tex]\[ \boxed{\frac{1}{81}} \][/tex]