Answer :
To determine which expression is equivalent to [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex], let's simplify it step-by-step.
1. Start with the given expression:
[tex]\[ \frac{5 y^3}{(5 y)^{-2}} \][/tex]
2. Consider the denominator [tex]\((5 y)^{-2}\)[/tex]. When raising a product to a power, distribute the exponent to each factor in the product:
[tex]\[ (5 y)^{-2} = 5^{-2} y^{-2} \][/tex]
3. Now substitute [tex]\(5^{-2} y^{-2}\)[/tex] back into the original expression:
[tex]\[ \frac{5 y^3}{5^{-2} y^{-2}} \][/tex]
4. Knowing that dividing by a fraction is the same as multiplying by its reciprocal, we rewrite the expression:
[tex]\[ \frac{5 y^3}{5^{-2} y^{-2}} = 5 y^3 \cdot 5^2 y^2 \][/tex]
5. Multiply the coefficients and combine the exponents for [tex]\(y\)[/tex]:
[tex]\[ 5 y^3 \cdot 5^2 y^2 = (5 \cdot 5^2) \cdot (y^3 \cdot y^2) \][/tex]
Simplify each part:
[tex]\[ 5 \cdot 5^2 = 5 \cdot 25 = 125 \][/tex]
[tex]\[ y^3 \cdot y^2 = y^{3+2} = y^5 \][/tex]
6. Combine these simplified parts to get the final simplified expression:
[tex]\[ 125 y^5 \][/tex]
Therefore, the expression [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex] simplifies to:
[tex]\[ 125 y^5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{125 y^5} \][/tex]
1. Start with the given expression:
[tex]\[ \frac{5 y^3}{(5 y)^{-2}} \][/tex]
2. Consider the denominator [tex]\((5 y)^{-2}\)[/tex]. When raising a product to a power, distribute the exponent to each factor in the product:
[tex]\[ (5 y)^{-2} = 5^{-2} y^{-2} \][/tex]
3. Now substitute [tex]\(5^{-2} y^{-2}\)[/tex] back into the original expression:
[tex]\[ \frac{5 y^3}{5^{-2} y^{-2}} \][/tex]
4. Knowing that dividing by a fraction is the same as multiplying by its reciprocal, we rewrite the expression:
[tex]\[ \frac{5 y^3}{5^{-2} y^{-2}} = 5 y^3 \cdot 5^2 y^2 \][/tex]
5. Multiply the coefficients and combine the exponents for [tex]\(y\)[/tex]:
[tex]\[ 5 y^3 \cdot 5^2 y^2 = (5 \cdot 5^2) \cdot (y^3 \cdot y^2) \][/tex]
Simplify each part:
[tex]\[ 5 \cdot 5^2 = 5 \cdot 25 = 125 \][/tex]
[tex]\[ y^3 \cdot y^2 = y^{3+2} = y^5 \][/tex]
6. Combine these simplified parts to get the final simplified expression:
[tex]\[ 125 y^5 \][/tex]
Therefore, the expression [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex] simplifies to:
[tex]\[ 125 y^5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{125 y^5} \][/tex]