noboa7
Answered

Which expression is equivalent to [tex](3a)^{-2}[/tex]?

A. [tex]\frac{1}{9a^2}[/tex]
B. [tex]\frac{1}{3a^2}[/tex]
C. [tex]\frac{3}{a^2}[/tex]
D. [tex]\frac{9}{a^2}[/tex]



Answer :

To determine the expression equivalent to [tex]\((3a)^{-2}\)[/tex], we need to understand the properties of exponents. Specifically, we will use the rule that states [tex]\(x^{-n} = \frac{1}{x^n}\)[/tex].

Let's break it down step-by-step:

1. Start with the given expression:
[tex]\[ (3a)^{-2} \][/tex]

2. Apply the negative exponent rule [tex]\(x^{-n} = \frac{1}{x^n}\)[/tex]:
[tex]\[ (3a)^{-2} = \frac{1}{(3a)^2} \][/tex]

3. Now, simplify the denominator [tex]\((3a)^2\)[/tex]. This is the square of the product [tex]\(3a\)[/tex]:
[tex]\[ (3a)^2 = 3^2 \cdot a^2 \][/tex]

4. Compute [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

5. Thus, the expression in the denominator becomes:
[tex]\[ (3a)^2 = 9a^2 \][/tex]

6. Substitute [tex]\(9a^2\)[/tex] back into the fraction:
[tex]\[ \frac{1}{(3a)^2} = \frac{1}{9a^2} \][/tex]

Therefore, the expression equivalent to [tex]\((3a)^{-2}\)[/tex] is:
[tex]\[ \frac{1}{9a^2} \][/tex]

This matches the first option.

Hence, the correct choice is:
[tex]\[ \boxed{\frac{1}{9a^2}} \][/tex]