noboa7
Answered

What is the quotient [tex]\frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}}[/tex] in simplified form? Assume [tex]p \neq 0[/tex], [tex]q \neq 0[/tex].

A. [tex]-\frac{3 p^8}{4 q^3}[/tex]

B. [tex]-\frac{3}{4 p^{16} q^9}[/tex]

C. [tex]-\frac{p^8}{5 q^3}[/tex]

D. [tex]-\frac{1}{5 p^{16} q^9}[/tex]



Answer :

To simplify the expression [tex]\(\frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}}\)[/tex], let's break it down step-by-step:

1. Rewrite the Expression:
[tex]\[ \frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}} \][/tex]

2. Combine the Constants:
[tex]\[ \frac{15}{-20} \][/tex]
Simplify [tex]\(\frac{15}{-20}\)[/tex]:
[tex]\[ \frac{15}{-20} = -\frac{3}{4} \][/tex]

3. Combine the Powers of [tex]\( p \)[/tex]:
[tex]\[ \frac{p^{-4}}{p^{-12}} \][/tex]
Using the properties of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ p^{-4 - (-12)} = p^{-4 + 12} = p^{8} \][/tex]

4. Combine the Powers of [tex]\( q \)[/tex]:
[tex]\[ \frac{q^{-6}}{q^{-3}} \][/tex]
Using the properties of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ q^{-6 - (-3)} = q^{-6 + 3} = q^{-3} \][/tex]

5. Combine All Parts:
Substitute back into the expression:
[tex]\[ -\frac{3}{4} \cdot p^8 \cdot q^{-3} \][/tex]

6. Rewrite with Positive Exponent for [tex]\( q \)[/tex]:
[tex]\[ -\frac{3 p^8}{4 q^3} \][/tex]

Thus, the simplified form of the expression [tex]\(\frac{15 p^{-4} q^{-6}}{-20 p^{-12} q^{-3}}\)[/tex] is:
[tex]\[ - \frac{3 p^8}{4 q^3} \][/tex]

Given the choices, the correct answer is:
[tex]\[ -\frac{3 p^8}{4 q^3} \][/tex]