Answer :
To solve the system of equations:
[tex]\[ \left\{ \begin{aligned} 3x - 2y &= 4 \\ y &= 3x - 5 \end{aligned} \right. \][/tex]
We can use the substitution method, where we substitute one equation into the other.
Step-by-step solution:
1. From the second equation [tex]\( y = 3x - 5 \)[/tex], we can use this expression for [tex]\( y \)[/tex] in the first equation.
[tex]\[ 3x - 2(3x - 5) = 4 \][/tex]
2. Distribute the [tex]\(-2\)[/tex] through the parenthesis:
[tex]\[ 3x - 6x + 10 = 4 \][/tex]
3. Combine like terms:
[tex]\[ -3x + 10 = 4 \][/tex]
4. Subtract 10 from both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ -3x = 4 - 10 \][/tex]
[tex]\[ -3x = -6 \][/tex]
5. Divide both sides by [tex]\(-3\)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-6}{-3} = 2 \][/tex]
6. Now that we have [tex]\( x = 2 \)[/tex], we substitute this value back into the second original equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 5 \][/tex]
[tex]\[ y = 3(2) - 5 \][/tex]
[tex]\[ y = 6 - 5 \][/tex]
[tex]\[ y = 1 \][/tex]
So, the solution to the system of equations is:
[tex]\[ \boxed{x = 2, y = 1} \][/tex]
[tex]\[ \left\{ \begin{aligned} 3x - 2y &= 4 \\ y &= 3x - 5 \end{aligned} \right. \][/tex]
We can use the substitution method, where we substitute one equation into the other.
Step-by-step solution:
1. From the second equation [tex]\( y = 3x - 5 \)[/tex], we can use this expression for [tex]\( y \)[/tex] in the first equation.
[tex]\[ 3x - 2(3x - 5) = 4 \][/tex]
2. Distribute the [tex]\(-2\)[/tex] through the parenthesis:
[tex]\[ 3x - 6x + 10 = 4 \][/tex]
3. Combine like terms:
[tex]\[ -3x + 10 = 4 \][/tex]
4. Subtract 10 from both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ -3x = 4 - 10 \][/tex]
[tex]\[ -3x = -6 \][/tex]
5. Divide both sides by [tex]\(-3\)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-6}{-3} = 2 \][/tex]
6. Now that we have [tex]\( x = 2 \)[/tex], we substitute this value back into the second original equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 5 \][/tex]
[tex]\[ y = 3(2) - 5 \][/tex]
[tex]\[ y = 6 - 5 \][/tex]
[tex]\[ y = 1 \][/tex]
So, the solution to the system of equations is:
[tex]\[ \boxed{x = 2, y = 1} \][/tex]