noboa7
Answered

Marina correctly simplified the expression [tex] \frac{-4 a^{-2} b^4}{8 a^{-6} b^{-3}} [/tex], assuming that [tex] a \neq 0 [/tex] and [tex] b \neq 0 [/tex]. Her simplified expression is below.

[tex] -\frac{1}{2} a^4 b^{\square} [/tex]

The exponent of the variable [tex] b [/tex] in Marina's solution should be [tex] \square [/tex].



Answer :

To determine the exponent of the variable [tex]\( b \)[/tex] in the simplified expression [tex]\(\frac{-4 a^{-2} b^4}{8 a^{-6} b^{-3}}\)[/tex], we need to follow a systematic approach to simplify the given expression step-by-step.

Let's break it down:

1. Simplify the constants:
- In the fraction [tex]\(\frac{-4}{8}\)[/tex], simplify -4 divided by 8:
[tex]\[ \frac{-4}{8} = -\frac{1}{2} \][/tex]

2. Simplify the exponents for [tex]\( a \)[/tex]:
- In the expression, we have [tex]\( a^{-2} \)[/tex] in the numerator and [tex]\( a^{-6} \)[/tex] in the denominator. Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{a^{-2}}{a^{-6}} = a^{-2 - (-6)} = a^{-2 + 6} = a^{4} \][/tex]

3. Simplify the exponents for [tex]\( b \)[/tex]:
- In the expression, we have [tex]\( b^{4} \)[/tex] in the numerator and [tex]\( b^{-3} \)[/tex] in the denominator. Again, using the property of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex]:
[tex]\[ \frac{b^4}{b^{-3}} = b^{4 - (-3)} = b^{4 + 3} = b^{7} \][/tex]

So, putting all the simplified parts together, Marina's simplified expression is:

[tex]\[ -\frac{1}{2} a^4 b^{7} \][/tex]

Thus, the exponent of the variable [tex]\( b \)[/tex] in Marina's solution is [tex]\( 7 \)[/tex].

Therefore, the box ( [tex]\(\square\)[/tex] ) should be filled with the number:
[tex]\[ \boxed{7} \][/tex]