noboa7
Answered

Which expression is equivalent to [tex]\left(\frac{4mn}{m^{-2}n^6}\right)^{-2}[/tex]? Assume [tex]m \neq 0, n \neq 0[/tex].

A. [tex]\frac{n^6}{16m^8}[/tex]

B. [tex]\frac{n^{10}}{16m^6}[/tex]

C. [tex]\frac{n^{10}}{8m^8}[/tex]

D. [tex]\frac{4m^3}{n^8}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\left(\frac{4 m n}{m^{-2} n^6}\right)^{-2}\)[/tex], let's go through the problem step by step.

Given expression:
[tex]\[ \left(\frac{4 m n}{m^{-2} n^6}\right)^{-2} \][/tex]

First, let's simplify the fraction inside the parentheses:

[tex]\[ \frac{4 m n}{m^{-2} n^6} \][/tex]

Recall that [tex]\( m^{-2} = \frac{1}{m^2} \)[/tex], so we can rewrite the denominator:

[tex]\[ \frac{4 m n}{\frac{1}{m^2} n^6} = 4 m n \cdot \frac{m^2}{n^6} \][/tex]

Now combine the terms:

[tex]\[ 4 m n \cdot m^2 \cdot \frac{1}{n^6} = 4 m^{1+2} n^{1-6} = 4 m^3 n^{-5} \][/tex]

Next, we need to raise this simplified expression to the power of [tex]\(-2\)[/tex]:

[tex]\[ \left(4 m^3 n^{-5}\right)^{-2} \][/tex]

Raising a product to a power means raising each factor to that power:

[tex]\[ 4^{-2} \cdot (m^3)^{-2} \cdot (n^{-5})^{-2} \][/tex]

Calculate each term:

[tex]\[ 4^{-2} = \frac{1}{16}, \quad (m^3)^{-2} = m^{-6}, \quad (n^{-5})^{-2} = n^{10} \][/tex]

Combine these results:

[tex]\[ \frac{1}{16} \cdot m^{-6} \cdot n^{10} = \frac{n^{10}}{16 m^6} \][/tex]

Thus, the equivalent expression is:

[tex]\[ \frac{n^{10}}{16 m^6} \][/tex]

Among the given choices, this matches with the second option:

[tex]\[ \boxed{\frac{n^{10}}{16 m^6}} \][/tex]