noboa7
Answered

Which shows the following expression after the negative exponents have been eliminated?

[tex]\[ \frac{x y^{-6}}{x^{-4} y^2}, \quad x \neq 0, \quad y \neq 0 \][/tex]

A. [tex]\(\frac{x^4}{y^2 x^6 y^6}\)[/tex]

B. [tex]\(\frac{x x^4}{y^2 y^6}\)[/tex]

C. [tex]\(\frac{x^4}{y^2 x y^6}\)[/tex]

D. [tex]\(\frac{x^4 y^2}{x y^6}\)[/tex]



Answer :

To simplify the given expression [tex]\(\frac{x y^{-6}}{x^{-4} y^2}\)[/tex] and eliminate the negative exponents, let's break it down step-by-step:

1. Rewrite the negative exponents as positive exponents:

[tex]\[ x y^{-6} = \frac{x}{y^6} \][/tex]
[tex]\[ x^{-4} y^2 = \frac{y^2}{x^4} \][/tex]

So, the expression [tex]\(\frac{x y^{-6}}{x^{-4} y^2}\)[/tex] becomes:
[tex]\[ \frac{\frac{x}{y^6}}{\frac{y^2}{x^4}} \][/tex]

2. Simplify the complex fraction:

To simplify [tex]\(\frac{\frac{x}{y^6}}{\frac{y^2}{x^4}}\)[/tex], multiply the numerator by the reciprocal of the denominator:
[tex]\[ \frac{x}{y^6} \div \frac{y^2}{x^4} = \frac{x}{y^6} \cdot \frac{x^4}{y^2} \][/tex]

3. Combine the fractions:

Multiply the numerators together and the denominators together:
[tex]\[ \frac{x \cdot x^4}{y^6 \cdot y^2} = \frac{x^{1+4}}{y^{6+2}} = \frac{x^5}{y^8} \][/tex]

Now, we need to match this simplified expression [tex]\(\frac{x^5}{y^8}\)[/tex] with one of the provided options.

Let's evaluate each option:

- [tex]\(\frac{x^4}{y^2 x^6 y^6}\)[/tex]:
[tex]\[ = \frac{x^4}{x^6 y^8} = \frac{1}{x^2 y^8} \][/tex]

- [tex]\(\frac{x x^4}{y^2 y^6}\)[/tex]:
[tex]\[ = \frac{x^5}{y^8} \][/tex]

- [tex]\(\frac{x^4}{y^2 x y^6}\)[/tex]:
[tex]\[ = \frac{x^4}{x y^8} = \frac{x^3}{y^8} \][/tex]

- [tex]\(\frac{x^4 y^2}{x y^6}\)[/tex]:
[tex]\[ = \frac{x^3 y^2}{y^6} = \frac{x^3}{y^4} \][/tex]

The correct option that matches [tex]\(\frac{x^5}{y^8}\)[/tex] is:

[tex]\[ \boxed{\frac{x x^4}{y^2 y^6}} \][/tex]