noboa7
Answered

Simplify the expression [tex]\left(\frac{1}{4ab}\right)^{-2}[/tex]. Assume [tex]a \neq 0, b \neq 0[/tex].

A. [tex]-\frac{1}{16a^2b^2}[/tex]
B. [tex]\frac{a^2b^2}{4}[/tex]
C. [tex]-16a^2b^2[/tex]
D. [tex]16a^2b^2[/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex], let's go through it step by step.

1. Understanding Negative Exponents:
The expression [tex]\(\left(\frac{1}{4ab}\right)^{-2}\)[/tex] involves a negative exponent. Recall that:
[tex]\[ (x^{-n}) = \frac{1}{x^n} \][/tex]
and
[tex]\[ \left(\frac{1}{x}\right)^{-n} = x^n \][/tex]
Therefore,
[tex]\[ \left(\frac{1}{4ab}\right)^{-2} = (4ab)^2 \][/tex]

2. Applying the Exponent:
Now, we need to square the term inside the parentheses:
[tex]\[ (4ab)^2 \][/tex]

3. Exponent Distributes Over Multiplication:
When raising a product to an exponent, apply the exponent to each factor inside:
[tex]\[ (4ab)^2 = 4^2 \cdot (a)^2 \cdot (b)^2 \][/tex]

4. Calculating Each Part:
[tex]\[ 4^2 = 16, \quad a^2 = a^2, \quad b^2 = b^2 \][/tex]

5. Combining the Results:
[tex]\[ 16 \cdot a^2 \cdot b^2 = 16a^2b^2 \][/tex]

Thus, the simplified expression is:
[tex]\[ 16a^2b^2 \][/tex]

The correct answer is:
[tex]\[ \boxed{16a^2b^2} \][/tex]