noboa7
Answered

Which expression is equivalent to [tex] \frac{b^{-2}}{a b^{-3}} [/tex]? Assume [tex] a \neq 0, b \neq 0 [/tex].

A. [tex] \frac{a}{b^5} [/tex]

B. [tex] \frac{1}{a b^5} [/tex]

C. [tex] \frac{a^3 b}{1} [/tex]

D. [tex] \frac{b}{a} [/tex]



Answer :

To simplify the expression [tex]\(\frac{b^{-2}}{a b^{-3}}\)[/tex], let's go through the steps:

1. Rewrite the Expression:
The given expression is [tex]\(\frac{b^{-2}}{a b^{-3}}\)[/tex].

2. Separate the Fractions:
We can break it down to make it easier to handle:
[tex]\[ \frac{b^{-2}}{a b^{-3}} = \frac{b^{-2}}{a} \cdot \frac{1}{b^{-3}} \][/tex]

3. Simplify Each Part:
Next, we handle the fractions individually:
[tex]\[ \frac{b^{-2}}{a} \cdot \frac{1}{b^{-3}} \][/tex]

4. Apply the Laws of Exponents:
Recall that [tex]\(\frac{1}{b^{-3}} = b^{3}\)[/tex]. So the expression now is:
[tex]\[ \frac{b^{-2}}{a} \cdot b^{3} \][/tex]

5. Combine the Exponents:
Using the laws of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex], we get:
[tex]\[ b^{-2 + 3} = b^{1} = b \][/tex]

6. Rewrite the Expression:
Combining all the parts, we have:
[tex]\[ \frac{b}{a} \][/tex]

Therefore, the equivalent expression to [tex]\(\frac{b^{-2}}{a b^{-3}}\)[/tex] is:
[tex]\[ \boxed{\frac{b}{a}} \][/tex]