noboa7
Answered

Which expression is equivalent to [tex]\frac{-9 x^{-1} y^{-9}}{-15 x^5 y^{-3}}[/tex]? Assume [tex]x \neq 0, y \neq 0[/tex].

A. [tex]\frac{3}{5 x^5 y^3}[/tex]
B. [tex]\frac{3}{5 x^6 y^6}[/tex]
C. [tex]\frac{5}{3 x^5 y^3}[/tex]
D. [tex]\frac{5}{3 x^6 y^6}[/tex]



Answer :

To simplify the given expression [tex]\(\frac{-9 x^{-1} y^{-9}}{-15 x^5 y^{-3}}\)[/tex], follow these steps:

1. Simplify the numerical coefficients:
Consider the coefficients [tex]\(-9\)[/tex] and [tex]\(-15\)[/tex].
[tex]\[ \frac{-9}{-15} = \frac{9}{15} = \frac{3}{5} \][/tex]

2. Simplify the [tex]\(x\)[/tex] terms:
Combine the exponents of [tex]\(x\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{x^{-1}}{x^5} = x^{-1 - 5} = x^{-6} \][/tex]

3. Simplify the [tex]\(y\)[/tex] terms:
Combine the exponents of [tex]\(y\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{y^{-9}}{y^{-3}} = y^{-9 - (-3)} = y^{-9 + 3} = y^{-6} \][/tex]

4. Combine everything into the simplified expression:
Combine the simplified coefficient with the simplified [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ \frac{3}{5} \cdot x^{-6} \cdot y^{-6} = \frac{3}{5 x^6 y^6} \][/tex]

So, the expression equivalent to [tex]\(\frac{-9 x^{-1} y^{-9}}{-15 x^5 y^{-3}}\)[/tex] is:
[tex]\[ \boxed{\frac{3}{5 x^6 y^6}} \][/tex]