Answer :
Let's solve the given system of equations step by step.
The system is:
[tex]\[ \begin{cases} \frac{2}{3} x - \frac{1}{3} y = 3 \\ \frac{5}{3} x + \frac{1}{3} y = 4 \end{cases} \][/tex]
First, let's clear the denominators by multiplying each equation by 3:
[tex]\[ \begin{cases} 3 \left( \frac{2}{3} x - \frac{1}{3} y \right) = 3 \cdot 3 \\ 3 \left( \frac{5}{3} x + \frac{1}{3} y \right) = 3 \cdot 4 \end{cases} \][/tex]
This simplifies to:
[tex]\[ \begin{cases} 2x - y = 9 \\ 5x + y = 12 \end{cases} \][/tex]
Now we have a system of equations in a simpler form:
[tex]\[ \begin{cases} 2x - y = 9 \\ 5x + y = 12 \end{cases} \][/tex]
Next, we add the two equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ (2x - y) + (5x + y) = 9 + 12 \][/tex]
This simplifies to:
[tex]\[ 7x = 21 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{21}{7} = 3 \][/tex]
Now, we substitute [tex]\( x = 3 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the first equation:
[tex]\[ 2x - y = 9 \][/tex]
Substituting [tex]\( x = 3 \)[/tex]:
[tex]\[ 2(3) - y = 9 \][/tex]
This simplifies to:
[tex]\[ 6 - y = 9 \][/tex]
Solving for [tex]\( y \)[/tex], we get:
[tex]\[ -y = 9 - 6 \\ -y = 3 \\ y = -3 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 3, \quad y = -3 \][/tex]
Therefore, the solution is:
[tex]\[ \boxed{(3, -3)} \][/tex]
The system is:
[tex]\[ \begin{cases} \frac{2}{3} x - \frac{1}{3} y = 3 \\ \frac{5}{3} x + \frac{1}{3} y = 4 \end{cases} \][/tex]
First, let's clear the denominators by multiplying each equation by 3:
[tex]\[ \begin{cases} 3 \left( \frac{2}{3} x - \frac{1}{3} y \right) = 3 \cdot 3 \\ 3 \left( \frac{5}{3} x + \frac{1}{3} y \right) = 3 \cdot 4 \end{cases} \][/tex]
This simplifies to:
[tex]\[ \begin{cases} 2x - y = 9 \\ 5x + y = 12 \end{cases} \][/tex]
Now we have a system of equations in a simpler form:
[tex]\[ \begin{cases} 2x - y = 9 \\ 5x + y = 12 \end{cases} \][/tex]
Next, we add the two equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ (2x - y) + (5x + y) = 9 + 12 \][/tex]
This simplifies to:
[tex]\[ 7x = 21 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = \frac{21}{7} = 3 \][/tex]
Now, we substitute [tex]\( x = 3 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the first equation:
[tex]\[ 2x - y = 9 \][/tex]
Substituting [tex]\( x = 3 \)[/tex]:
[tex]\[ 2(3) - y = 9 \][/tex]
This simplifies to:
[tex]\[ 6 - y = 9 \][/tex]
Solving for [tex]\( y \)[/tex], we get:
[tex]\[ -y = 9 - 6 \\ -y = 3 \\ y = -3 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 3, \quad y = -3 \][/tex]
Therefore, the solution is:
[tex]\[ \boxed{(3, -3)} \][/tex]