What is the product of the following polynomials:

[tex]\left(-3x^5 - 4x^4\right)\left(7x^2 - 2x + 6\right)?[/tex]

[tex]\left(-3x^5 - 4x^4\right)\left(7x^2 - 2x + 6\right) = \square[/tex]



Answer :

To find the product of the polynomials [tex]\((-3x^5 - 4x^4)\)[/tex] and [tex]\((7x^2 - 2x + 6)\)[/tex], let's perform a step-by-step polynomial multiplication process.

Start by distributing each term in the first polynomial [tex]\((-3x^5 - 4x^4)\)[/tex] across every term in the second polynomial [tex]\((7x^2 - 2x + 6)\)[/tex].

1. Multiply [tex]\(-3x^5\)[/tex] by each term in the second polynomial:
[tex]\[ -3x^5 \cdot 7x^2 = -21x^7 \][/tex]
[tex]\[ -3x^5 \cdot (-2x) = 6x^6 \][/tex]
[tex]\[ -3x^5 \cdot 6 = -18x^5 \][/tex]

2. Next, multiply [tex]\(-4x^4\)[/tex] by each term in the second polynomial:
[tex]\[ -4x^4 \cdot 7x^2 = -28x^6 \][/tex]
[tex]\[ -4x^4 \cdot (-2x) = 8x^5 \][/tex]
[tex]\[ -4x^4 \cdot 6 = -24x^4 \][/tex]

Now, combine all these results together:
[tex]\[ -21x^7 + 6x^6 - 18x^5 - 28x^6 + 8x^5 - 24x^4 \][/tex]

Next, combine like terms:
1. Combine [tex]\(x^6\)[/tex] terms:
[tex]\[ 6x^6 - 28x^6 = -22x^6 \][/tex]

2. Combine [tex]\(x^5\)[/tex] terms:
[tex]\[ -18x^5 + 8x^5 = -10x^5 \][/tex]

As a result, the product of the polynomials is:
[tex]\[ -21x^7 - 22x^6 - 10x^5 - 24x^4 \][/tex]

Therefore, the solution is:
[tex]\[ (-3x^5 - 4x^4)(7x^2 - 2x + 6) = -21x^7 - 22x^6 - 10x^5 - 24x^4 \][/tex]