Answer :
Let's go step-by-step to find the product of the given fractions:
[tex]\[ \frac{2y}{y-3} \cdot \frac{4y - 12}{2y + 6}. \][/tex]
First, let's write down the two given fractions:
1. [tex]\(\frac{2y}{y-3}\)[/tex]
2. [tex]\(\frac{4y - 12}{2y + 6}\)[/tex]
Now, we'll multiply these fractions. According to the rules of fraction multiplication, we multiply the numerators together and the denominators together:
[tex]\[ \frac{2y}{y-3} \cdot \frac{4y - 12}{2y + 6} = \frac{(2y) \cdot (4y - 12)}{(y-3) \cdot (2y + 6)}. \][/tex]
Next, we'll simplify the expression.
Consider the numerator first:
[tex]\[ 2y \cdot (4y - 12) = 2y \cdot 4y - 2y \cdot 12 = 8y^2 - 24y. \][/tex]
Now, consider the denominator:
[tex]\[ (y - 3) \cdot (2y + 6) \][/tex]
Observe that [tex]\(2y + 6\)[/tex] can be factored:
[tex]\[ 2y + 6 = 2(y + 3). \][/tex]
Thus, the denominator factoring is:
[tex]\[ (y - 3) \cdot 2(y + 3). \][/tex]
Putting it all together, we have:
[tex]\[ \frac{8y^2 - 24y}{2(y-3)(y+3)}. \][/tex]
Now, notice that the numerator [tex]\(8y^2 - 24y\)[/tex] has a common factor of [tex]\(8y\)[/tex]:
[tex]\[ 8y^2 - 24y = 8y(y - 3). \][/tex]
So we have:
[tex]\[ \frac{8y(y - 3)}{2(y - 3)(y + 3)}. \][/tex]
Next, we cancel out the common factor [tex]\((y - 3)\)[/tex]:
[tex]\[ \frac{8y}{2(y + 3)}. \][/tex]
Now, simplify the fraction by dividing both the numerator and the denominator by 2:
[tex]\[ \frac{8y}{2(y + 3)} = \frac{4y}{y + 3}. \][/tex]
Therefore, the product of the given fractions is:
[tex]\[ \frac{4y}{y + 3}. \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{4 y}{y+3}} \][/tex]
[tex]\[ \frac{2y}{y-3} \cdot \frac{4y - 12}{2y + 6}. \][/tex]
First, let's write down the two given fractions:
1. [tex]\(\frac{2y}{y-3}\)[/tex]
2. [tex]\(\frac{4y - 12}{2y + 6}\)[/tex]
Now, we'll multiply these fractions. According to the rules of fraction multiplication, we multiply the numerators together and the denominators together:
[tex]\[ \frac{2y}{y-3} \cdot \frac{4y - 12}{2y + 6} = \frac{(2y) \cdot (4y - 12)}{(y-3) \cdot (2y + 6)}. \][/tex]
Next, we'll simplify the expression.
Consider the numerator first:
[tex]\[ 2y \cdot (4y - 12) = 2y \cdot 4y - 2y \cdot 12 = 8y^2 - 24y. \][/tex]
Now, consider the denominator:
[tex]\[ (y - 3) \cdot (2y + 6) \][/tex]
Observe that [tex]\(2y + 6\)[/tex] can be factored:
[tex]\[ 2y + 6 = 2(y + 3). \][/tex]
Thus, the denominator factoring is:
[tex]\[ (y - 3) \cdot 2(y + 3). \][/tex]
Putting it all together, we have:
[tex]\[ \frac{8y^2 - 24y}{2(y-3)(y+3)}. \][/tex]
Now, notice that the numerator [tex]\(8y^2 - 24y\)[/tex] has a common factor of [tex]\(8y\)[/tex]:
[tex]\[ 8y^2 - 24y = 8y(y - 3). \][/tex]
So we have:
[tex]\[ \frac{8y(y - 3)}{2(y - 3)(y + 3)}. \][/tex]
Next, we cancel out the common factor [tex]\((y - 3)\)[/tex]:
[tex]\[ \frac{8y}{2(y + 3)}. \][/tex]
Now, simplify the fraction by dividing both the numerator and the denominator by 2:
[tex]\[ \frac{8y}{2(y + 3)} = \frac{4y}{y + 3}. \][/tex]
Therefore, the product of the given fractions is:
[tex]\[ \frac{4y}{y + 3}. \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{4 y}{y+3}} \][/tex]