noboa7
Answered

Which expression is equivalent to [tex]\frac{3x}{x+1}[/tex] divided by [tex]x+1[/tex]?

A. [tex]\frac{3x}{x+1} \cdot \frac{1}{x+1}[/tex]
B. [tex]\frac{3x}{x+1} \div \frac{1}{x+1}[/tex]
C. [tex]\frac{x+1}{1} \div \frac{3x}{x+1}[/tex]
D. [tex]\frac{x+1}{3x} \cdot \frac{x+1}{1}[/tex]



Answer :

To find which expression is equivalent to [tex]\(\frac{3x}{x+1}\)[/tex] divided by [tex]\(x+1\)[/tex], we need to simplify the division.

The original expression is:
[tex]\[ \frac{\frac{3x}{x+1}}{x+1} \][/tex]

Now, we can rewrite this expression by multiplying by the reciprocal of [tex]\(x+1\)[/tex]:
[tex]\[ \frac{3x}{x+1} \div x+1 = \frac{3x}{x+1} \cdot \frac{1}{x+1} \][/tex]

This simplifies our expression to:
[tex]\[ \frac{3x}{(x+1) \cdot (x+1)} = \frac{3x}{(x+1)^2} \][/tex]

Thus, the equivalent expression to [tex]\(\frac{3x}{x+1}\)[/tex] divided by [tex]\(x+1\)[/tex] is:
[tex]\[ \frac{3x}{x+1} \cdot \frac{1}{x+1} \][/tex]

Hence, the correct choice is:
[tex]\[ \frac{3x}{x+1} \cdot \frac{1}{x+1} \][/tex]