Answer :

To solve the expression [tex]\(\left(\frac{6}{5}\right)^{-8}\)[/tex], we need to understand the concept of negative exponents. Here's the detailed, step-by-step solution:

### Step 1: Understand the Negative Exponent
A negative exponent indicates that we take the reciprocal (or multiplicative inverse) of the base and then raise it to the positive exponent. In this case, [tex]\(\left(\frac{6}{5}\right)^{-8} \)[/tex] implies:

[tex]\[ \left(\frac{6}{5}\right)^{-8} = \left(\frac{1}{\frac{6}{5}}\right)^{8} \][/tex]

### Step 2: Calculate the Reciprocal
To find the reciprocal of [tex]\(\frac{6}{5}\)[/tex], we simply invert the fraction:

[tex]\[ \frac{1}{\frac{6}{5}} = \frac{5}{6} \][/tex]

### Step 3: Apply the Positive Exponent
Next, we raise the reciprocal [tex]\(\frac{5}{6} \)[/tex] to the power of 8:

[tex]\[ \left(\frac{5}{6}\right)^{8} \][/tex]

### Step 4: Calculate the Result

The precise calculation of [tex]\(\left(\frac{5}{6}\right)^{8} \)[/tex] is:

[tex]\[ \left(\frac{5}{6}\right)^{8} = 0.2325680393613779 \][/tex]

So,

[tex]\[ \left(\frac{6}{5}\right)^{-8} = 0.2325680393613779 \][/tex]

Therefore, the value of [tex]\(\left(\frac{6}{5}\right)^{-8} \)[/tex] is approximately [tex]\(0.2325680393613779\)[/tex].