Answer :

To rewrite the given expression [tex]\( \left(4 v^3 w\right)\left(-2 w^3\right)^2 \)[/tex] in its simplest form, let's break it down into simpler components and simplify each step by step.

1. Analyze the Expression:
[tex]\[ \left(4 v^3 w\right)\left(-2 w^3\right)^2 \][/tex]

2. Evaluate the Power:
The expression [tex]\(\left(-2 w^3\right)^2\)[/tex] involves squaring [tex]\(-2 w^3\)[/tex].
[tex]\[ (-2 w^3)^2 = (-2)^2 (w^3)^2 = 4 w^6 \][/tex]

3. Substitute and Simplify:
Now, substitute the simplified part back into the original expression:
[tex]\[ \left(4 v^3 w\right) \times \left(4 w^6\right) \][/tex]

4. Combine the Constants:
Multiply the constants [tex]\(4\)[/tex] and [tex]\(4\)[/tex]:
[tex]\[ 4 \times 4 = 16 \][/tex]

5. Combine the Variables:
Multiply the variable parts:
[tex]\[ v^3 w \times w^6 \][/tex]
Using the laws of exponents, where [tex]\(w \times w^n = w^{1+n} = w^{1+6} = w^7\)[/tex], we get:
[tex]\[ v^3 w^7 \][/tex]

6. Combine Everything:
Put together the constant and variable parts:
[tex]\[ 16 v^3 w^7 \][/tex]

So, the simplified form of the expression [tex]\( \left(4 v^3 w\right)\left(-2 w^3\right)^2 \)[/tex] is:
[tex]\[ 16 v^3 w^7 \][/tex]