What is the slope of the line that contains these points?

\begin{tabular}{rrrrr}
[tex]$x$[/tex] & 15 & 17 & 19 & 21 \\
\hline
[tex]$y$[/tex] & -10 & 2 & 14 & 26 \\
\end{tabular}

slope: [tex]$\square$[/tex]



Answer :

To find the slope of the line passing through the given points, we use the formula for the slope of a line [tex]\(\frac{\Delta y}{\Delta x}\)[/tex], which represents the change in [tex]\(y\)[/tex] over the change in [tex]\(x\)[/tex].

Given points:
[tex]\[ (x_1, y_1) = (15, -10) \][/tex]
[tex]\[ (x_2, y_2) = (17, 2) \][/tex]

Now follow these steps:

1. Identify the coordinates of two points.

Point 1: [tex]\((x_1, y_1) = (15, -10)\)[/tex]

Point 2: [tex]\((x_2, y_2) = (17, 2)\)[/tex]

2. Calculate the change in [tex]\(y\)[/tex] ([tex]\(\Delta y\)[/tex]) and the change in [tex]\(x\)[/tex] ([tex]\(\Delta x\)[/tex]).

[tex]\[ \Delta y = y_2 - y_1 = 2 - (-10) = 2 + 10 = 12 \][/tex]
[tex]\[ \Delta x = x_2 - x_1 = 17 - 15 = 2 \][/tex]

3. Use the slope formula [tex]\(\text{slope} = \frac{\Delta y}{\Delta x}\)[/tex].

[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{12}{2} = 6 \][/tex]

So, the slope of the line that contains the given points is:

[tex]\[ \boxed{6} \][/tex]