Find the inverse of the function [tex] y = 2x^2 + 2 [/tex].

A. [tex] y = 2\sqrt{x-2} [/tex]
B. [tex] y = \sqrt[3]{\frac{1}{2}x - 1} [/tex]
C. [tex] y = 3\sqrt{2x^4 - 4} [/tex]
D. [tex] y = 3\sqrt{9} [/tex]



Answer :

To find the inverse of the function [tex]\( y = 2x^2 + 2 \)[/tex], let's proceed step-by-step.

1. Rewrite the function with [tex]\( y \)[/tex] as the dependent variable:
[tex]\[ y = 2x^2 + 2 \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = 2y^2 + 2 \][/tex]

3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ x - 2 = 2y^2 \][/tex]
[tex]\[ \frac{x - 2}{2} = y^2 \][/tex]

4. Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x - 2}{2}} \][/tex]

5. Express [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in terms of [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ y = \pm \frac{\sqrt{2x - 4}}{2} \][/tex]

Therefore, the inverse of [tex]\( y = 2x^2 + 2 \)[/tex] is:
[tex]\[ y = -\frac{\sqrt{2x - 4}}{2} \quad \text{and} \quad y = \frac{\sqrt{2x - 4}}{2} \][/tex]

The inverse functions are:
[tex]\[ f^{-1}(x) = -\frac{\sqrt{2x - 4}}{2} \quad \text{and} \quad f^{-1}(x) = \frac{\sqrt{2x - 4}}{2} \][/tex]

These represent the two branches of the inverse function, reflecting the fact that [tex]\( y = 2x^2 + 2 \)[/tex] is a parabola which is symmetric about the y-axis.