Distribute and Simplify.

1. [tex]\[
2(3x - 4) + 3x
\][/tex]
[tex]\[
6x - 8 + 3x
\][/tex]
[tex]\[
9x - 8
\][/tex]

2. [tex]\[
5 - 3(x + 3)
\][/tex]



Answer :

Of course! Let's work through the expression step-by-step to distribute and simplify it.

The expression given is: [tex]\( 5 - 3(x + 3) \)[/tex].

### Step 1: Distribute the [tex]\(-3\)[/tex] across the terms inside the parentheses
We start by distributing the [tex]\(-3\)[/tex] to both [tex]\(x\)[/tex] and 3 inside the parentheses.

[tex]\[ 5 - 3(x + 3) = 5 - 3x - 3 \cdot 3 \][/tex]

### Step 2: Perform the multiplication
Next, we resolve the multiplication within the distribution.

[tex]\[ 5 - 3x - 9 \][/tex]

### Step 3: Simplify by combining like terms
Now, we combine the constant terms [tex]\(5\)[/tex] and [tex]\(-9\)[/tex].

[tex]\[ 5 - 9 - 3x \][/tex]

[tex]\[ -4 - 3x \][/tex]

So, the simplified form of the expression [tex]\( 5 - 3(x + 3) \)[/tex] is:
[tex]\[ -3x - 4 \][/tex]

Thus, the simplified expression is [tex]\(\boxed{-3x - 4}\)[/tex].