Of course! Let's work through the expression step-by-step to distribute and simplify it.
The expression given is: [tex]\( 5 - 3(x + 3) \)[/tex].
### Step 1: Distribute the [tex]\(-3\)[/tex] across the terms inside the parentheses
We start by distributing the [tex]\(-3\)[/tex] to both [tex]\(x\)[/tex] and 3 inside the parentheses.
[tex]\[ 5 - 3(x + 3) = 5 - 3x - 3 \cdot 3 \][/tex]
### Step 2: Perform the multiplication
Next, we resolve the multiplication within the distribution.
[tex]\[ 5 - 3x - 9 \][/tex]
### Step 3: Simplify by combining like terms
Now, we combine the constant terms [tex]\(5\)[/tex] and [tex]\(-9\)[/tex].
[tex]\[ 5 - 9 - 3x \][/tex]
[tex]\[ -4 - 3x \][/tex]
So, the simplified form of the expression [tex]\( 5 - 3(x + 3) \)[/tex] is:
[tex]\[ -3x - 4 \][/tex]
Thus, the simplified expression is [tex]\(\boxed{-3x - 4}\)[/tex].