Answer :

To solve the equation

[tex]\[ \sqrt[3]{9 + \sqrt{x}} + \sqrt[3]{9 - \sqrt{x}} = 3, \][/tex]

we start by letting
[tex]\( a = \sqrt[3]{9 + \sqrt{x}} \)[/tex]
and
[tex]\( b = \sqrt[3]{9 - \sqrt{x}} \)[/tex].

This allows us to rewrite the equation as:

[tex]\[ a + b = 3. \][/tex]

Next, we cube both sides of the equation to eliminate the cube roots, which gives us:

[tex]\[ (a + b)^3 = 3^3. \][/tex]

Expanding the left-hand side, we get:

[tex]\[ a^3 + b^3 + 3ab(a + b) = 27. \][/tex]

Since [tex]\(a + b = 3\)[/tex], we can substitute [tex]\(a + b\)[/tex] into the equation:

[tex]\[ a^3 + b^3 + 3ab \cdot 3 = 27. \][/tex]

This simplifies to:

[tex]\[ a^3 + b^3 + 9ab = 27. \][/tex]

Next, we recognize that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are cube roots of the expressions [tex]\(9 + \sqrt{x}\)[/tex] and [tex]\(9 - \sqrt{x}\)[/tex], respectively. Thus,

[tex]\[ a^3 = 9 + \sqrt{x} \quad \text{and} \quad b^3 = 9 - \sqrt{x}. \][/tex]

So,

[tex]\[ a^3 + b^3 = (9 + \sqrt{x}) + (9 - \sqrt{x}) = 18. \][/tex]

Substituting this back into our equation, we get:

[tex]\[ 18 + 9ab = 27. \][/tex]

Subtracting 18 from both sides, we have:

[tex]\[ 9ab = 9. \][/tex]

So,

[tex]\[ ab = 1. \][/tex]

Now, let's recall that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] were defined as:

[tex]\[ a = \sqrt[3]{9 + \sqrt{x}} \quad \text{and} \quad b = \sqrt[3]{9 - \sqrt{x}}. \][/tex]

So,

[tex]\[ ab = \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})}. \][/tex]

We know [tex]\(ab = 1\)[/tex], so:

[tex]\[ \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})} = 1. \][/tex]

Cubing both sides to eliminate the cube root, we get:

[tex]\[ (9 + \sqrt{x})(9 - \sqrt{x}) = 1. \][/tex]

Expanding the left-hand side using the difference of squares, we have:

[tex]\[ 81 - (\sqrt{x})^2 = 1. \][/tex]

Simplifying this, we obtain:

[tex]\[ 81 - x = 1. \][/tex]

Solving for [tex]\(x\)[/tex], we subtract 1 from both sides:

[tex]\[ 81 - 1 = x. \][/tex]

Thus,

[tex]\[ x = 80. \][/tex]

Therefore, the solution is:

[tex]\[ \boxed{80} \][/tex]