Answer :
To solve the equation
[tex]\[ \sqrt[3]{9 + \sqrt{x}} + \sqrt[3]{9 - \sqrt{x}} = 3, \][/tex]
we start by letting
[tex]\( a = \sqrt[3]{9 + \sqrt{x}} \)[/tex]
and
[tex]\( b = \sqrt[3]{9 - \sqrt{x}} \)[/tex].
This allows us to rewrite the equation as:
[tex]\[ a + b = 3. \][/tex]
Next, we cube both sides of the equation to eliminate the cube roots, which gives us:
[tex]\[ (a + b)^3 = 3^3. \][/tex]
Expanding the left-hand side, we get:
[tex]\[ a^3 + b^3 + 3ab(a + b) = 27. \][/tex]
Since [tex]\(a + b = 3\)[/tex], we can substitute [tex]\(a + b\)[/tex] into the equation:
[tex]\[ a^3 + b^3 + 3ab \cdot 3 = 27. \][/tex]
This simplifies to:
[tex]\[ a^3 + b^3 + 9ab = 27. \][/tex]
Next, we recognize that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are cube roots of the expressions [tex]\(9 + \sqrt{x}\)[/tex] and [tex]\(9 - \sqrt{x}\)[/tex], respectively. Thus,
[tex]\[ a^3 = 9 + \sqrt{x} \quad \text{and} \quad b^3 = 9 - \sqrt{x}. \][/tex]
So,
[tex]\[ a^3 + b^3 = (9 + \sqrt{x}) + (9 - \sqrt{x}) = 18. \][/tex]
Substituting this back into our equation, we get:
[tex]\[ 18 + 9ab = 27. \][/tex]
Subtracting 18 from both sides, we have:
[tex]\[ 9ab = 9. \][/tex]
So,
[tex]\[ ab = 1. \][/tex]
Now, let's recall that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] were defined as:
[tex]\[ a = \sqrt[3]{9 + \sqrt{x}} \quad \text{and} \quad b = \sqrt[3]{9 - \sqrt{x}}. \][/tex]
So,
[tex]\[ ab = \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})}. \][/tex]
We know [tex]\(ab = 1\)[/tex], so:
[tex]\[ \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})} = 1. \][/tex]
Cubing both sides to eliminate the cube root, we get:
[tex]\[ (9 + \sqrt{x})(9 - \sqrt{x}) = 1. \][/tex]
Expanding the left-hand side using the difference of squares, we have:
[tex]\[ 81 - (\sqrt{x})^2 = 1. \][/tex]
Simplifying this, we obtain:
[tex]\[ 81 - x = 1. \][/tex]
Solving for [tex]\(x\)[/tex], we subtract 1 from both sides:
[tex]\[ 81 - 1 = x. \][/tex]
Thus,
[tex]\[ x = 80. \][/tex]
Therefore, the solution is:
[tex]\[ \boxed{80} \][/tex]
[tex]\[ \sqrt[3]{9 + \sqrt{x}} + \sqrt[3]{9 - \sqrt{x}} = 3, \][/tex]
we start by letting
[tex]\( a = \sqrt[3]{9 + \sqrt{x}} \)[/tex]
and
[tex]\( b = \sqrt[3]{9 - \sqrt{x}} \)[/tex].
This allows us to rewrite the equation as:
[tex]\[ a + b = 3. \][/tex]
Next, we cube both sides of the equation to eliminate the cube roots, which gives us:
[tex]\[ (a + b)^3 = 3^3. \][/tex]
Expanding the left-hand side, we get:
[tex]\[ a^3 + b^3 + 3ab(a + b) = 27. \][/tex]
Since [tex]\(a + b = 3\)[/tex], we can substitute [tex]\(a + b\)[/tex] into the equation:
[tex]\[ a^3 + b^3 + 3ab \cdot 3 = 27. \][/tex]
This simplifies to:
[tex]\[ a^3 + b^3 + 9ab = 27. \][/tex]
Next, we recognize that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are cube roots of the expressions [tex]\(9 + \sqrt{x}\)[/tex] and [tex]\(9 - \sqrt{x}\)[/tex], respectively. Thus,
[tex]\[ a^3 = 9 + \sqrt{x} \quad \text{and} \quad b^3 = 9 - \sqrt{x}. \][/tex]
So,
[tex]\[ a^3 + b^3 = (9 + \sqrt{x}) + (9 - \sqrt{x}) = 18. \][/tex]
Substituting this back into our equation, we get:
[tex]\[ 18 + 9ab = 27. \][/tex]
Subtracting 18 from both sides, we have:
[tex]\[ 9ab = 9. \][/tex]
So,
[tex]\[ ab = 1. \][/tex]
Now, let's recall that [tex]\(a\)[/tex] and [tex]\(b\)[/tex] were defined as:
[tex]\[ a = \sqrt[3]{9 + \sqrt{x}} \quad \text{and} \quad b = \sqrt[3]{9 - \sqrt{x}}. \][/tex]
So,
[tex]\[ ab = \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})}. \][/tex]
We know [tex]\(ab = 1\)[/tex], so:
[tex]\[ \sqrt[3]{(9 + \sqrt{x})(9 - \sqrt{x})} = 1. \][/tex]
Cubing both sides to eliminate the cube root, we get:
[tex]\[ (9 + \sqrt{x})(9 - \sqrt{x}) = 1. \][/tex]
Expanding the left-hand side using the difference of squares, we have:
[tex]\[ 81 - (\sqrt{x})^2 = 1. \][/tex]
Simplifying this, we obtain:
[tex]\[ 81 - x = 1. \][/tex]
Solving for [tex]\(x\)[/tex], we subtract 1 from both sides:
[tex]\[ 81 - 1 = x. \][/tex]
Thus,
[tex]\[ x = 80. \][/tex]
Therefore, the solution is:
[tex]\[ \boxed{80} \][/tex]