Table #1: Mix it Up

\begin{tabular}{|l|l|l|l|}
\hline
\begin{tabular}{l}
Activity \\
Number
\end{tabular} & \begin{tabular}{c}
Name of \\
Substance
\end{tabular} & \begin{tabular}{c}
State of \\
Matter
\end{tabular} & \begin{tabular}{c}
Changes \\
Observed
\end{tabular} \\
\hline
\multirow{2}{}{ Task 1 } & & & \\
\cline { 2 - 4 } & & & \\
\hline
\multirow{2}{
}{ Task 2 } & & & \\
\cline { 2 - 4 } & & & \\
\hline
\multirow{2}{}{ Task 3 } & & & \\
\cline { 2 - 4 } & & & \\
\hline
\multirow{2}{
}{ Task 4 } & & & \\
\cline { 2 - 4 } & & & \\
\hline
\end{tabular}



Answer :

Sure, let's solve this problem step by step. Given the expenses and income, we need to find the total expenses and the amount of money left after expenses.

1. Income Details:
- Total Income: [tex]$50 2. Expenses Details: - Rent: $[/tex]20
- Groceries: [tex]$15 - Transportation: $[/tex]5

3. Calculating Total Expenses:
- To find the total expenses, we sum up all the individual expenses:
[tex]\[ \text{Total Expenses} = \text{Rent} + \text{Groceries} + \text{Transportation} \][/tex]
Substituting the values:
[tex]\[ \text{Total Expenses} = 20 + 15 + 5 = 40 \][/tex]

4. Calculating Money Left:
- To find the amount of money left after these expenses, we subtract the total expenses from the total income:
[tex]\[ \text{Money Left} = \text{Income} - \text{Total Expenses} \][/tex]
Substituting the values:
[tex]\[ \text{Money Left} = 50 - 40 = 10 \][/tex]

Therefore, the total expenses are 40, and the amount of money left after these expenses is 10.