Answer :

To find the value of [tex]\( n \)[/tex] given the first term [tex]\( a_1 = 3 \)[/tex], the common difference [tex]\( d = 4 \)[/tex], and the [tex]\( n \)[/tex]-th term [tex]\( a_n = 59 \)[/tex] in an arithmetic sequence, we can follow these steps:

1. Understand the formula for the [tex]\( n \)[/tex]-th term of an arithmetic sequence:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]

2. Substitute the known values into the formula:
[tex]\[ 59 = 3 + (n-1) \cdot 4 \][/tex]

3. Isolate the term with [tex]\( n \)[/tex]:
[tex]\[ 59 = 3 + 4(n-1) \][/tex]

4. Subtract 3 from both sides of the equation to simplify:
[tex]\[ 59 - 3 = 4(n-1) \][/tex]
[tex]\[ 56 = 4(n-1) \][/tex]

5. Divide both sides by 4 to solve for [tex]\( n-1 \)[/tex]:
[tex]\[ \frac{56}{4} = n - 1 \][/tex]
[tex]\[ 14 = n - 1 \][/tex]

6. Add 1 to both sides of the equation to find [tex]\( n \)[/tex]:
[tex]\[ 14 + 1 = n \][/tex]
[tex]\[ n = 15 \][/tex]

Therefore, the value of [tex]\( n \)[/tex] is [tex]\( 15 \)[/tex].