Find the value of [tex]x[/tex] in the equation [tex]\cos (3x + 180^\circ) = \frac{\sqrt{3}}{2}[/tex] for [tex]0^\circ \leqslant x \leqslant 180^\circ[/tex].



Answer :

Let's solve the equation [tex]\(\cos(3x + 180^\circ) = \frac{\sqrt{3}}{2}\)[/tex] for [tex]\(0^\circ \leq x \leq 180^\circ\)[/tex].

The cosine function [tex]\(\cos(\theta)\)[/tex] equals [tex]\(\frac{\sqrt{3}}{2}\)[/tex] at specific angles. These angles can be determined from the unit circle:
[tex]\[ \cos(\theta) = \frac{\sqrt{3}}{2} \implies \theta = 30^\circ + 360^\circ n \text{ or } \theta = 330^\circ + 360^\circ n \text{ for integer } n \][/tex]

Replace [tex]\(\theta\)[/tex] with [tex]\(3x + 180^\circ\)[/tex] and solve for [tex]\(x\)[/tex].

1. Solving [tex]\(3x + 180^\circ = 30^\circ + 360^\circ n\)[/tex]:
[tex]\[ 3x + 180^\circ = 30^\circ + 360^\circ n \][/tex]
Rearrange to isolate [tex]\(x\)[/tex]:
[tex]\[ 3x = 30^\circ - 180^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = -150^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{-150^\circ + 360^\circ n}{3} \][/tex]
We need to find [tex]\(x\)[/tex] within the range [tex]\(0^\circ \leq x \leq 180^\circ\)[/tex]. Therefore:

For [tex]\(n = -1\)[/tex]:
[tex]\[ x = \frac{-150^\circ + 360^\circ \cdot (-1)}{3} = \frac{-150^\circ - 360^\circ}{3} = \frac{-510^\circ}{3} = -170^\circ \quad (\text{out of range}) \][/tex]

For [tex]\(n = 0\)[/tex]:
[tex]\[ x = \frac{-150^\circ + 360^\circ \cdot 0}{3} = \frac{-150^\circ}{3} = -50^\circ \quad (\text{out of range}) \][/tex]

For [tex]\(n = 1\)[/tex]:
[tex]\[ x = \frac{-150^\circ + 360^\circ \cdot 1}{3} = \frac{-150^\circ + 360^\circ}{3} = \frac{210^\circ}{3} = 70^\circ \quad (\text{valid}) \][/tex]

2. Solving [tex]\(3x + 180^\circ = 330^\circ + 360^\circ n\)[/tex]:
[tex]\[ 3x + 180^\circ = 330^\circ + 360^\circ n \][/tex]
Rearrange to isolate [tex]\(x\)[/tex]:
[tex]\[ 3x = 330^\circ - 180^\circ + 360^\circ n \][/tex]
[tex]\[ 3x = 150^\circ + 360^\circ n \][/tex]
[tex]\[ x = \frac{150^\circ + 360^\circ n}{3} \][/tex]
We need to find [tex]\(x\)[/tex] within the range [tex]\(0^\circ \leq x \leq 180^\circ\)[/tex]. Therefore:

For [tex]\(n = 0\)[/tex]:
[tex]\[ x = \frac{150^\circ + 360^\circ \cdot 0}{3} = \frac{150^\circ}{3} = 50^\circ \quad (\text{valid}) \][/tex]

For [tex]\(n = 1\)[/tex]:
[tex]\[ x = \frac{150^\circ + 360^\circ \cdot 1}{3} = \frac{150^\circ + 360^\circ}{3} = \frac{510^\circ}{3} = 170^\circ \quad (\text{valid}) \][/tex]

Combining all obtained results, [tex]\(x\)[/tex] values within the given range are:
[tex]\[ \boxed{70^\circ, 50^\circ, 170^\circ} \][/tex]